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PRETFACE

This book includes the essentials of geometry and algebra, the
fundamentals of plane and spberical trigonometry, elementary
caleulus, and a short introduction to conics.

The course is thus sufficiently comprehensive to meet the needsy,
of most people, and will be particularly useful to engineers, a.nd‘
other technicians, namgator::., members of H .M. Forces and. those
preparing to enter such services. N

Conforming with suggestions of the Ministry o: Eﬂucation
in that the subject is treated as a whole and Wob in isolated
parts, the book provides a course of mathepiatics on modern
lines for technical and other post-primary schools.

It is hoped that the references to thes p\eneers may excite an
interest in the history of mathematigs™-8 history rich In great
personalities and wonderful a,r,hlevements, and inspired by the
intense desire and striving of man o solve the mysteries of the
universe and to appreciate the fullnesa of its glory.

While there may be no zeyal roads to mathematics, some seem
to be more direct than Jokhers, and an endeavour has heen made
to conduct the reac J\alcmg such roads. Academic treatment has
been avoided asifar\ds possible, practical demonstration being
considered more\llt keeping with the spirit of the course and
present-day reQulrements

‘Many of 3li¥ exercises are designed to prepare the way to sub-
scquenf\“hapters, and others to illustrate the applications of the
relatiohs’ established.

The chapters on calenius and conics are ineluded not only for

~ 'thelr usefulness but also to lead the student towards the realm
Jof higher mathematics and to encourage him to go forward.

A. H. B

Q"
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SYMBOLS AND ABBREVIATIONS

= equals. Ry nearly equals. )
= greater than. <z less than. % {J
li paralicl fo. L perpendicular &3\";
- lesding to. {(

+ plus, or positive. - min; CE&tIVB
e multiplicd by. +or/ dw %
£ or ~ angle, 4 gla

@ degrees, \(3/:; quare root.

! factorial product, e.g. 31=13 x\?

a6 varies as. & \“w infinity.

\\\‘X

opp. Gpposite. ; int.  interior.

ext. exterior, rt. £ right sngla,

log,y logarithm, b ﬁommc‘n)

log, loga-ritlm';gé@se ¢ (Napierian)

Z—i d.iﬁef;:@%;bihl eoefficient of y with respect to 2.

2N/
Y

{e28)
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CHAPTER T

COMPUTATION, DECIMALS, METRIC SYSTEM,

PERCENTAGE AN
e\

1. The Decimal System. A\

It is assumed that the reader is familiar with the eléwmentary
principles and operations of the decimal system. HerQ only a few
special aspects and applications will be considered ")

2. The Metric System.* S\

The metric system is 2 decimal systelw‘x’sIts operation is so
simple that many people advocate its\idoption by Britain, but
although the system was for the sccond)time legalized in Great
Britain in 1897, in the opinion ofegthers the cost and incon-
venience that the change would\edtail outweighed other con-
siderations. JON

3. Length,—The unit is the metre, origimally taken to be a ten-
millionth part of the quadrant of the meridian through Paris. It
1s approximately 39-3% in) The multiples and fractions of the unit
follow in tenths resing from left to right, the fractions being
placed after the @ecimal point. The names and sequence are
shown below, "

Kilo zg\étp: Deka  METRE deci centi  mmilli
1 8 2 7 * 4 6 5
Th,e\'m;a is:
) .,\:f; Multiples Fractions
N\ 10 metres =1 deka-m. 10 milli-m. =1 centi-m.
7 10 deka-m, =1 hecto-m. 10 centi-m. =1 deci-m.
10 hecto-m. =1 kilo-m., 10 deci-m. =1 metre,

The prefixes kilo (1000), hecto (100), deka (10) {Greek); deei
(fg), centi {fg), milll (4) (Latin), are used throughout the
system. Maero (a milion) and micro {a millionth) are met

* Enacted in 1799, and made compulsory by the French Republic in 1801,
1 ¥
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2 AREA

oceasionally. In contracted form, deka-m., hecto-m., kilo-m. are
written Dm., Hm., Km.

4, Area.—The unit of area is the sqnare whose side is a metre,
and the first subdivision is a square whose side 18 1 dm., Lec. a
tenth of a metre, The square decimetre is therefore 5 Xfy=xlg
of a square metre. In consequence, two places in the decimal {
syatom are required for square decimeotres, and so on, a

What the fignres represent in the ates 426-07381 sq. m. is showh
below: o\ N

. \.
sg. Do, . M. 8q. dm. §Q. COL. ST I s

P

4 26 e 0T 38 G s ™.

N

Note specially that the last figure represents.l‘(gl\sq. mu. not
1 sq. mm. If1 sq. mm. had been infended th&JeSt fignre would
have been replaced by 01 e\

A larger unit for land measurement is¢the arE, which is equal
fo 100 sg. m. Ity multiples and fractions’are in tens and tenths
respectively. : QY -

5. Volume.—The unit of voliiite is the cube whose sides are
each a metre Jong. The frstémbdivision is. the cubic decimetre,
whose volume is 5 3 %5 X 9% =y of # cubic metre. Three places
in the decimal system aresrequired for eubic decimetres, and so
on, as the number btrslo}sr Hlustratos:

c. m. \\ R c.c. ¢, mrm,
214 @ 387 028 105 C. M.

Anot-hcr,m;ﬁt; more convenicnt for mawy purposes, is the LITRE,
which h@\{s\a’ volume equal to one cubic decimetre. Its divisions
are ingtewths and its muléiples in tens like those of length and

thegelgré require only one place in the decimal system. A litre
i whout 1-76 pt.

~\’ 3
~/ 8. Weight.—The unif is the gram, which is the weight of 1 c.e.

of pure water at 4° C., at which temperature water has its greatest
density.,

The multiples and fractions are in tens and tenths repectively,
a3 in the case of length.

The kilogram is about 2-2 lb. avoirdnpois.

The choice of this unit of weight allows of ready calenlations in
relative densify (the number of times a substance is as heavy as
an equal volume of water), weight and volume.
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CHANGE OF UNIT 3

ExampPLE.—Find the weight of a bar of iron 5 em. square and
20 cm. long and of relative density T7-8.

Wi, =0 x5x20%X7-8 gm.
=3%00 gm. or 3-9 Kgm.

7. Change of Unit.—In any given number a new unit can be
adopted by simply moving the decimal point. Thus for amall |
volumes, as in chemical analysis, the eubic centimetre (c.c.) is
generally used as the unit. For example, 26-5 ¢.c. means 26 gwc.
and 500 ¢. mm. If the cubic metre had been retained as thedinit
this would have been written as 0-0000265 ¢. m. O

8. Approximations.—Remlts are often required @o‘}réé‘t to a
particular place in the system. For example, if 3874 has to be
stated to the neatest whole mumber, it is neafst Y58 than 357,
On the other hand, 357-4 is nearer 357 than 338V The only doubt
is concerning -5, snd it is the practico te esunt it as greater
than half for this purpose. Thus 3575 te’ the nearest integer
is 358. G

The rule is, therefore, if the figuré ander consideration is less
than & it is rejected; if b or moreyhe next higher place figure is
increased by one. N\

O3
*

) Exrerse (a)

. State to the neafdst integer 1053, 10503, 1058, 105008,
10567, 105427
2. State to the mearest second place of decimals, 38-367, 0-287,
0499, (04907, _
S?.'g'-mﬁmff Figures *
02'&3135}1 differ as to the precise definition of “significant figures .
ThéyNiave becn defined ast “ those which must be retained for any
posetion of the decimal point”’, that is, whatever unit of the decimal

{“system may be adopted. For example:

{i) 0305 Em. =305 m.

* The Encyclopedia Britannica states: * The significant figures aro those
which commence with the first figure other thay zero in the number. Thus
the significant figures of 13-027 and of -00013027 are the same.” This is

hardly satisfactory as a definifion.

+ The Mathematical Asscciation’s Report on the Teaching of Arithmetic
in Bchools.
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4 CONTRACTED MULTIPLICATION AND DIVISION

The first nought has become unnecessary, and is not a sig-
nificant figure whereas the nought between the 3 and the 5 is
retained, and like them is a significant figure.

(ii) 3050 m, =305 Km.

The last nought has in the change become unnecessary, hut
again that between 3 and 5 is still necessary, and is u significantss,
figure.

A nought at the end of a number may, however, be significaht’
For example: AN

4050 m. may be faken to mean that the length is gtased to
the nearest millimetre, and is less than 3-0505 m. I&“this case,
the nought is significant. To show that the lengti{is"expressed
to the nearest final figure, a dot {or a numben of dots) is some-
times placed on the line, thus 3-050, m. g

Generally, all the figures of a number ardylignificant exeept
noughts which arc immediately after the’decimal point in a
number less than one, and in many casgﬂ,}bu't not all, the noughts
at the end of a number, P\,

9. Coniracted Multiplication agd’ Division.—In order to under-

stand the following operationdithe student should eonvinee himself
of the aecuracy of the following statements.

The first figure obpaéi(ed by mmitiplying any denomination by:

(i) units, is 0f~tl'@"s;&me denomination, e.g. multiplying hun-
dredths by units E}ves bandredths,

& 01x1=-01;

(i) tewblls; is of the next lower denomination, e.g. multiplying
hundredths by tenths gives thousandths,

O\ 01 >¢-1=-001;

N (1'1_1) hundredths, is two Iower in denomination, e.g. multi-
“plying tenths by hundredths gives thousandshs,

*1 »-01~=-Q01.

On the other hand, multiplying by tens, hundreds, ete,, ralses
the denomination.

Contracied Bultiplication.—A common method is ta adjust the
numbers 8o that the multiplier is in standard form; that is, a0
that the first figure is a unit figure.



CONTRACTED MULTIPLICATION AND DIVESION

5

Examere 1.—Multiply 625-48 by 0-327 to the second place of

decimals,

625-48 x0-327

=62-548 % 3-27

¢ ba
62-548
a be
327
187-64
1251
438

Make the first figure of -327 a unit figure by
multiplying by 16. To counterbalance this divide
the multiplicand by 10.

Place the multiplier so that its wnit figure (3} is
under the place figure (4) to which the operation is
to he worked,

Begin the first line with the product of these two
figures (4 x 3) but the number to be carried furwq.rd\
from 8 x 3 must be added, making 14. LW

Tha first figure of the second line is chtaified \by
the produet of 2 and 5, the brovght-forward niwnber
being 1, sinee 4 % 2 Is nearer 10 than 0. ™

All lines begin with the same placgih this case
the second. The figures lettered ali]’\etw’a.re the num-
hers to be multiplied to obtain the first figure of the
line, Lettering avoids confusipo\V’

ExAMPLE il.—Multiply 48-329 by 70-65 to,@b‘place of decimals,

48-329 x T0-65 = 483-29 % T-065

deba
483-29
a bod

7-065

33830
29-0
94
34144

N

b

N

R&

P
First-‘,ﬁg'ﬁre'fmm {2 % T)+ 6 brought forward.
N (8 * 6) 2,
.im:!\ (4X5)+4 I

i) " "

EE] ”» i

Contracied Pawision—Divisor converted into standard form.
ExaMprA 1y Divide 36-7542 by -7605.
36-7542 1367542 |

il

W 4833
T 607)367-542
O 30w
63 34
60 84
2 50
228

22

Multiplying both numbers by 10 does not alter

" T7.805% | the guotient.

The first figure (4) of the answer is placed
abovs, in the place it would be put if pot by short
division by the unit figure {7) of the divisor.

TInstead of bringing down the next figure (2) or
adding a © in sabsequent lines & figure is croased
off the divisor, in this case (§), snd the method
continued fo the end.

{7 x 3)+ 2 brought forward =23, which ie nearer
29 thap (7 % 2} + L.
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8 CONTRACTED MULTTPLICATION AND DIVISION

The quotient is correct to the second decimal place. If more
places are required the crossing off should be begun later so that
at least one figure is left in the divisor for the last figure of the
quotient.

Examere ii—Divide 204632 by 625:48 to the third place of
decimsls,

04532 204582 | i
625'4:8_ = 6‘25@ i yuang b_o numbers Al 160,

N

2N
82T A\
6-2348)2-04533 Two figures in esch number may be grossed off
1-876 ut the outset. .
160 &
125 o
44 \
43 OV
Exgrcise I{ﬁ:}f
L. Convert the following: N -
(3} 1-356 m. into em, :f{;ﬁﬁ) 5 sq. dm. into sq. m.
{ii} 387 cm. into m. & (vifi) 3:25 hectares into ares,
{is) 25 mm. into m o {ix) 15385 c.c. into c. dm.
(iv) 2-2 K. into m, {(z} 1-25 c.m. into c.c.
(v) 22 Km. i{fgcﬁl. (xi) 2564 litres into hectolitres.
(vi) 3 sq. m, in%o 5q. em.  (xii) 4.8 Kgm. into gm,

L >

5\ (xii1) 67-5 mgm. into gm,
2. Taking(¥he earth’s circumference to be 25,000 miles, find the
nimeber of inches in a metre.

3. I&,t\ﬂ'a:te what fraction a kilometre i5 of a mile, taking a metre
L\ to equal 39-37 in.

"\.e}’;:?Veri_fy that, approximately, an inch equals 2:54 c¢m., and a '_

metre, 1-1 yd.

AN ) 5. A hectare is 100 ares. Compaze the size of the hectare with

that of the acre.

19. Mized Fractions.

It is often labour-saving o use both decimal and vulgar frac-

tions rather than to resiriet the operations to one system of
fractions.



MIXED FRACTIONS | 7

Tor example, in computing 17-28 x 3-125 it is easicr to use 3}
Instead of 3-125, thus:

17-28 ’ 2:16

_ 3 or 1728 <25 216 54
51-84 ] 4 !
216

54-00

The student should be on the alert for such opportunities,and)
should not plunge into caleulations but mske a prelifunary
examination of the numbers involved. (

Tt is wise also to make an estimate of the answers-® rough
approximation it may bo in many cases, but genesally it will be
safficiently near to cnsure that the final answer 3§ Zeasonable and
does not contain a glaring error, say, in the position of the decimal

B AY;
point; e.g. %x%x3-85><3-85, by the zgﬁ:{g\h cancelling shown,
and treating 3-86 as equal to 4, cam bé seen to be about 64.
Actually it is 62-113. i

1i. Percentages, ,.j:'s.

Tt is often convenient, «8pecially for comparison, to reckon
* per centum 7, that ig by hundred *. _

Tor example, one hilf is 50 out of & hundred, 1.e. 50 per cent.
The symbol for p tis %. Thus 3=50%, + =25%, and so on.

T 8D
To convert a fﬁé@ jon into percentage form muitiply it by 100.

Exameripse() §is $x100%="75%.
'\:'} (i) 356 is -356 X 100%, = 356%.
T gxpress a percentage in fractional form, divide by 100. '
E’i&b;PLE.—BE)% in fractional form is Ff5="35 or 5.
& \ "19. Error per cent.—Example: An error of ‘05 of an inch is
\/ made in measuring (1) a line 9 in. long, and also {ii) in measuring
a line 10 in. Jong. Express the errors per cent and compare them.
05
(i) Fractional crror ==

-05
Error %=X 100= 2-5%.
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. -05
{ii) Fractional error=1£0-.

05
Error %, = Tp *100="59;.
It is evident that, relatively, the first is the greater crror.

N\

Exercrse T (o) D)y

. e\

1. Find the errors per cent in taking (i) 3:14; (i) 3%, ingtead of
3-14186, N

2. Find the error per cent in each of the followiQ’g.étatements:
(1) 1 m.=39¢ in, {ii) 1 m.=1J13d
@) T m.=3} 5. {iv} 1 sq. m.\*,l-f% sq. vd.

3. A oublo inch= 254X 254 254 0.0, Garly. Work this out
to the second decimal fignhre. g~

4. Compute 37-085X0-598 correc ¥ the fourth significant
ﬁglu'e. * :.‘

5. Divide 643-3 by 12566 to fi%e significant figures.

. Compute 1403536 x(3b35

187 T :

7. Show that 3095805 x038¢ 13.
¢ x (-067
Find}he value to 4 significant figures.
8. Compute ,\'-6:)61 * -803% + 7547 X 5948 x -3956,
(N7 2904
. —_ ‘
- oM ST 561
10, ']%é"&veragc of a set of numbers is their sum divided by
AN their number.  Find the average of the following five
'"\x{‘ numbers: 3-142, 3-149, 3-136, 3-141, 3-14.
"\ Find 8 x 15-3694 + 6195,
2 8307 % 0025
12, Find BLXOTIBE |
Note—The zsooner 70U learn to use logarithms, Chap. XVII1, the
more time you will save, '
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CHAPTER 1II
GREOMETRY

Material things occupy space, that is, take up room, They are
asid to have VoLtmE. The solid things have shape or form, angd /A
in (teometry the features of the shapes of solids are studwd

The word “ Georetry *’ means * Earth measurement ', and¢ t'he'
earliest study of the subject was concerned with land me&su.re-
ment of the Nile district of Egypt. 3

{ "}&
1. Geometrical Forms. o
The more important geometrical forms are’ 1lh1§trated in the
figures shown (figs. 1 te 6). If actual models.‘are available it

is better to hardle and examine them cloch(,‘
\ b

1
}
1
1
1
1

»
Nt/

~

Square Pyramid
Fig. 3

A ~. Cylinder Cone Sphere
. Fig. 4 Fig. § Fig. 6

Note carefnily the following:

1. The boundaries of solide are surfaces. Some surfaces are
flat or PLANE, others rounded or CURVELD.

2. ¥dges or lines are the boundaries of surfaces. Some lines are
straight, others curved.

3. The ends of linea are poinis.



10 LINES, DIRECTION

2. Lines, Direction.

A line has length but not breadth. Tts ends are points, If two
lines intersect they do so at a point, _

A straight line keeps the same direction all along its length.
It has two directions, one being the exact opposite of the other,

A + ~+ B
Fig. 7

78 N
If AB (fig. 7) is a straight line the direction from A O
exactly opposite to that from B to A, « N

Another property often used is that the straight lineidistance
is the shortest distance between two points, >

M

Fig. 8 O
A curved line changes its direction cogtﬁiuously {fig. 8).

$°¢ 3
~

3. Surfaces: Plane and Curved.

A plane or flat surface is straight'in every direction. If a straight
edge, say of a ruler, iy Placed 'on, 1t, it will lie on the surface in
every position, T\ _

- If any two points be taken on a plane surface the straight line
Joining them will toush/#h® surface at every point of its length,

I one plane surfacgis placed on another the two will touch at
every point. Ther’eg(i‘l’l be no pace between them.

Test the surfaegs 8f the models for planeness, using the straight
edge of a ruler,\Jeo whether light passes through when the edge
of the ruler/is‘placed in various positions and directions.

1t will hefound in testing the curved surfaces of the eylinder
and eou®\that although the straight edge can be placed along the
surfaed\if some positions it cannot be so placed i ell positions.

Jnthe case of the sphere there is no position in which the straight

sedge will le along the surface,

e

« Of the geometrical forms Hlustrated, the surfaces of the cube,
square prism, and pyramid are all plane surfaces. The two
etds of the cylinder and the base of the cone also are plane
surfaces, but the remaining surface of the cylinder and of the
eone and the whole surface of the sphere are curved,

All surfaces have hoth length and breadth, and their cxtent or

area depends on these measurements or dimensions ag they are
often called. ' '
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4, Angles.
The difference in the directions OA and OB (fig. 9) is the angle
AOL. '
B
o 3 A
Fig, 9 , \:\'

7'\ “

Notice how the angle is named, the letter of the point orwertex
being the middle of the three letters. N

(O
Straight Angle. ?)

Tf & straight line OA is rotated until its diredtion from O to A
is exactly reversed, it i3 rotated through a gbrtaight angle.

In fig. 10 A,04, is a straight angle if glfe’ direction OA, 15 ex-
actly opposite to the direction OAy.; “The rotation may be anti-

oo/

A, - A,
L% !

K. 10
clockwise or c!r_:ckwise...."(Clo.ckwise means the way in which the
pointers of a clock polate.) Notice that A0 and OA; are in a

straight line. LA

Right Angle:

A right @hgle is half a straight angle. OA, has rotated through
& right, \a,'n\gIé when it reaches the half-way position between 04,
and QAL

A réight ling at right angles to another is gaid to be perpen=

dieular or normal to the other. _ - ’
£\ “Cycle.—Tf the rotation of QA s continned until it reaches its

.\ Y - - ET
\ \ “original direction, a cycle is completed.
A cycle equals two straight angles.

5. Classification of other Angles.

An aewte angle is less than » right angle.
An obtuse angle is greater than a right angle but less than a

gtraight angle. _
A refle angle is greater than & straight angle.



12 THE PROTRACTOR

Aoute Obtuse Reflex
Fig. 11 Fig. 12 Fig. 13

N
The complement of an acute angle s the angle reguired to make
up & right angle, (\)
The supplement of an acute or an obtuse angle is the afigle re-
quired to make up s straight angle, \ o

#7%G
< X

6. The Protractor. \\

The protractor is an instrument used for meaguring and mark-
Ing out angles. Tt ig usually made of met INtelluloid or wood.
On it the straight angle is divided into 180y ;s}:{al parts, each part
being called a degree. Degrees are denotéd by the gign °

AN/ Fig. 14

Exa,n;ixit;.\a protractor and notice that:

(i) Phe’ graduation marks are directed towards one point
(A if\fe. 14). -
) It s numbered from o to 180 both clockwise and anti-
o Jelockwise,
N/ Fig. 14 shows how 4o nse it.
Be sure that it is placed so that A is at the vertex of the angle

and the appropriate 0 or zerg mark over one of the lines of the
angle,

7. Set-squares,
Bet-squares. aro made of bard material, and have the shape of
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a triangle with one angle a right angle. The other angles are each
45° in one type, and 60° and 30° in another (figs. 10 and 16).

Fig. 15 Fig. 16 a0
N

These angles ate set off on paper by drawing lings>along the
edges, the set square being held firmly in positiefy )

Practise marking out these angles, and méagure them with a
protractor. \\,

Exgrcise 11 (A}:\ “

1. The diagram (fig. 17) represents %he chief compass directions
for the centre point. What ‘are the angles betweern the
following directions meagured (i) clockwise, (ii) anticlock-
wise: N. and E., N. gud NE., N, and 8.E,, N. and 8.W.,
E. and N.W., 8.E, and W., W, and N.E., N.W. and N.E.#

“Rw, N.E.

S.
Fig. 17

2. Maxk a point O and draw from ib a straight line to represent
the north direction. Draw straight Jines from O to repre-
sent the directions (i) 30° E. of N.; (i) 40° W. of N.;
(iii) 20° E. of N.
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o

- How many degrees are there in {i) & right angle, (ii) a cycle ?

e

- Draw & straight line on transparent paper. Fold the paper so
that one part of the straight line lies along the othey. Mule
a sharp creasc. Test the angles between the crease and the
stzaight line for right angles.

- A straight line AB is placed on another straight line CI) o
that end A is exactly on end (!, What conclusions do vou
draw if end B falls (i) on end D, (it} between € and D,
(iii) beyond D? )

- Place & set-square on paper and withous moving it deaw a
straight line along esch edge. Turn the set-squarethrough
an angle, and again draw a straight line along each cdge.
Measure the angle between the two lines deafyw along cach
of the three edges. Flow do the threc angled compare?

i ]

(=23

f%;\\'

o o A
Rz, 18

7. The straight line ABjg rigidly joined to the straight line OA
(fg. 18). If 0.@"(;}1anges its dircction by 20°, what is the
change in tkg\dircction of ABY Draw the new position
of OAB.

8. Draw anyangle To each of the containing lines draw a straight
Iine ag\iight angles. What do you krow abont the angle
betsween these perpendicnlars on Normals? Draw s figure.

(Tv%s omportant 1o remember that the angle between the
\’%ﬁ‘-mals o two straight Lines is equal lo the angle between

W\ ke straight lines,

AN _

\‘

\ FUNDAMENTAL, APPLICATIONS

L. Intersecting Straight Lines, Opposite Vertical Angles,

" Draw two straight lines AB and €D erossing at O {fig. 19).
Mark the directions A to B and € to I,

It follows at once, since direction A0 is the same ag 005, and

N\
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C0 as OD, that the difference between directions AQ and €O is
the same as between directions Q1 and QD:

1.e. ZAOC = A BOD.
Similarly, ZA0D = £COB.

These are called pairs of epposite vertical angles. Notice that

they have the same vertex O.
B A\ ¢
)
~\\ A
\/
A - % B
\:»\\\'
C \
Fig. 10 \\“

Yot 4
W

RS
Exeroise—Draw another straighfhliné EF through O and
make & list of the pairs of equal O]‘;)Ho’&ifs‘e vertical angles, naming
the lines forming them in each case.jGheck by protractor measure-
ment. \ju
II. Parallel Straight Limes.
Parallel straight lines bave the same dircetion but are not in
a straight line wi&{\eac’h other. In fig. 20, AB and CD both

RS NORTH
:’1\') R
x:\ﬁ.' B
0% g* e g
N 4
N < id —+D
,..\i'\f' /
N /o
SOUTH
Fig. 20

point in, say, the easterly direction but are not in a gtraight line

with cach other. _
If & straight line OPQR is drawn across them the difference



O

N\
v Ruler and Set-square Construction

~e

16 PARALLEL STRAIGHT LINES

between the direction of the paralicls and of this transversal is
the same for both;

ie, ZBQR = /DPQ, and /AQR - 2CPQ,

There are other pairs of equal angles. Name them and test
them in the following way., Tuke a piece of transpareut paper
and place it over one of the angles. Carefully make pencil mackg™,
over the lines limiting or bounding the angle. Sce 1f the traced
angle exactly fits the other angle you consider equal to 1t. L { N

Referring to the fignre, the angles outside the parallels apesdaitéd
exterior angles, those between them, {nierior angles. Angleg Situated
like ZAQP and ~QPD on differcnt sides of the trangversal, and
having one bounding line in common, are said to be/aliernate.

You will find that olfernate interior angles axg~crpial;

ie. LAQP = alt. ~QPD \

and L0PQ = alt, L PQBAY
Exterior angles also are equal in paizs;

iLe. ZAQR = ¢ OTD

and £0PCSY BQR.

What do the interior angles BOP and QPD make togcther?
Name other pairz of angles which together equal a straight angle.
Remember these facth eoncerning
angles so formed, add)particularly
the fundamental et that an eg-
terior angle like™ BQR is equal to
its opposite spibrior angle, in thig
case /DTN '
You will'have noticed also that
parallel Witles neither converge nor
divergs, that is they keep the same
digtance apart all along their length,

of Parallel Straight Lines.

The edge of the ruler is used ag
& transversal and an angle of the
set-squate to give the direction of Fig. 21
the parallels. Place the set-square
in one of the positions indicated in fig. 21, and the ruier along
one of its edges. Draw a lige along one of the other edges, then
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slide the set-zgquare along the ruler to another position. Draw
another line along the same edge as before,

Ii it s required to draw & line parailel to a given straight line,
place the set-square so that one edge iz on the given line and
proceed as before.

Accuracy greatly depends on keeping the ruler firmly in posi-
tion. A little practice will give you ease in manipnlation.

N
2\
e A\
L 3 N

Exercise 11 (B)

1. Draw a straight line in any direction. 4

Construct & pair of parallel straight lines ~1ﬁ&1€1’hg an
angle of 60° with this line as a transversal, & &
Measure all the angles in the figiure. *Measure also the

digtance the lines are apart at different Roints.

2. An exterior angle between one of a pair\of parallel straight
lines and a transversal is 30°. Mlake & diagram and on it
show the size of the other angles.

3. If one angle formed by a transvetsal and parallel straight lines
is & right angle, what are_the other angles?

4. You will find squared papér eonvenient for this exercise and
many others. N

Mark a point A'\and for it show by arrows the N., E., 8.,
and W. directighis® On one side of A at a convenient dis-
tance mark & point B, and indicate for B the same four
directionghto “agree with those for point A. Repeat the
exercise-for other points, and pick out the parallels.
AN

II. The)Circle.
Thedirale is such a useful figure that we will consider it at once.
Its& be most readily drawn by means of a pair of compasses,
comsisting of two legs jointed so that they can be opened to
. (various angles, One ieg is pointed so that it can just pierce the
\Paper, and the other leg is fitted with a pencil carrier. )
V' The distance from the point of one leg te the pencil point on
the other can be adjusted within limits, )
With the compasses opened to, say, an inch between the points,
deseribe a eircle on a flat shect of paper. .
The centre point is called the centre; the boundary, the eir-
cumference; and a straight line from the centre to the ciroum-
ference, a radins (plural radii}.
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All radii of the same circle are, of course, equal in lengt-h._
The names of parts of a circle, and of lines agsociated with a
circle, are shown in fig. 22.

One of the great problems of mathematics is to find how the

cumierence.

fay)

Semicircle

7
Dlameter N

length of the circumference Divs};éirc]e can be ealeulated from the

length of its diameter. Thig.) ¥ill be considered Ister.
Work the following simpleexercises showing some uses of circles,

y \‘ Exwrosy I {c)

1. Mark a poindA dn a sheet of paper. Now mark a large number
of poiptsvan inch from A. Mark a few with crosses (%), It
willbg-tealized that in the circumference of a circle there
1930 mfinite number of points.

2. Matltwo points A and'B 1% in. apart. Find and mark as many

L \'points as possible each of which is an inch from A and also

&% aninch from B,

8. Continue Exercise 2 by finding other points equidistant from
\ ) Aand B, suy 2in., 12 in,, 21in. Join the points and write
down what you notice.

4. Use what you have learnt in Fxercise 3 to divide a straight line
2} in. long into two cqual parts, that is, to bisect it.

5. Join one of the points found in Exercise 3 to A snd B, thus
forming an angle. How does the straight line joining the
equidistant points divide this angle? Test your conclusion,



THE CIRCLE 15

6. Draw a cirele of any convenient radius, See how many times
this rading ean be stepped rownd the eircumference.
Mark the points of the steps and join them to the centre
of the cirele. What is the angle between adjacent radii?

7. Draw any two intersecting circles and join the centreg by &
straight line. Note that the points of intersection are on
opposite sides of this straight line. What happens when the
distance hetwecn the centres is increased without altering

the radius of each circle? Draw the case in which thie)*

circles just touch each other.

QO
R \*
RN
A B
> ON A

«ad
*

Fig. 23.—T' bisect straight line AB :: Tig. 24—To lisect the angle ABC
. N\ . . .

8. Four imporfant fufidamental constructions are given (in figs.
23 to 26). afine the diagrams carefully, making sure
of the ccitret of the arcs, and reproduce them. Practise
the uongtiuctions until you acquire accuracy.

A\
N A

7

i“\~.
N

~\/ Z
N/ Vw & & c

A v P

Fig. 25 ~Ta draw from A 2 straight line at Tig. 26, —To draw from A a stragght line
right angles to the straight line AD® at right angles to the straight line BC

N
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20 PLANE BECTILINEAL FIGURES

IV. Plane Reetilineal Figures.

Plane rectilineal figures are plane surfaces bounded by straight
lines.. The following are important.

Triangle—A trianglo is bounded by three straight lines. As
the name indicates, it has also three angles {fig. 27).

N

N ¢
AN
7N\S
JNS

Fig. 27 Fig. 23 Figa2n, )

A\

Square—A square has four sides, all equallin length, and all
its angles are right angles {fig. 28). \

If the side is an inch long, the area of :t]sk"square is one square
inch. AV

Oblong.—An oblong hws four sideghshose opposite heing equal
in length, and all its angles are rightingles (fig. 29).

Construct one 3 in. long and 29a." broad, and mark out squares
showing that its area is 3x 22§ gg. in.

The squaro and oblong axg often called Rectangles.

N

<\

v
‘E
L ) -

7 Faa Fig, 81

Pam@te}oga'am.—A patallelogram has four sides, the opposite
side\being parallel (fig. 30).
Riombus,—A rhombus has four sides, all equal, but its angles
&% not right angles (fig. 31).

Examine the figures named above and see if you can discover
any other properties,

V. Angle between Planes. |

Two plane surfaces intersect in a straight line and the angle
hetween the surfaces is taken to be the angle between two straight
lines, one in each plane, drawm at right angles to the line of inter-
section from the same point in it. '
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In the perspective figure (fig. 32), AB is the line of intersection
of planes P and Q, CD} in plane P is at right angles to AB, and

Fig. 22 w‘\ $

CE in plane @ is at right angles to AB. The sagle between the
planes 13 £LECD. The angle is the same for, {ﬂ.pmztmns of Cin
AB.

Qe

S 3
Q"

CHAPTER III
POSITIVE AND NE(xATI’?‘E NUMBERS AND BIGKNS

1. Possessions and Dehis.

A man (4), after payﬁg all his debts, may find that he still
posscsges & sum of ‘menoy or something equivalent to a sum of
money. Anotherdman (B3) may find that, although able to dis-
charge all his debts, be has nothing left. A third man {C) may
fing that aftbr “paying off as many debts as he is able, he has
still debta Eoypay.

If W%gree to call the state of A pogitive, as is usual, then the
state 0L € 1s negative, and that of B ncither positive nor negative.
Suppose that A’s possession is £15, then in Algebra his state is
shown as +£15 (spoken, plus hfteen} The mark + is called the

“Nplus sign, and +15 is called & positive number.

If (s remaining debts amount to £15, his state is deroted by
__£15 {(spoken, minus fiffeen). The mark — is called the minus
sign, and —15 is ealled a negative number. It will be observed
that the state of C is preeisely opposite to that of A.

The state of B is represented by the zero figure, 0. Notice that
in the zero state, there is an abscnce of both possessions and debts.

Note.—~A number with no sign is considered positive.
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Exrrcise IIT (a)

Answer the following:

L After paying all debts, a man is worth £350, Represent his
state algebraically, and contrast it with that of & man who
owes £250, Q)

2. Affer paying as many of his debts as possible, a man, fhds
that he still owes £60. Represent his state algebuaicaly.

3. Referring to Exercise 2, how much must the man damn hefore
he is able to reach the zero state? A\

4. A man has £350, but his dehts amount to $285) What is
his actual state? Represent it algebraically,

5. Ancther man has £235, and his debts awmount to £350. What
1s his actual state? Represent it algebraically,

6. A merchant, whose assets (possessibnt) amount to £350 and
his debts to £200, joins in hugt e85 with another merchant,
whose assets amount to £500%and whose debts arc £300.
What are the assets and debfs of the partnership? Repre-

sent its actual state algebraically,

7. A merchant, whose assets amoant to £250 and whose debts are
£350, joing*in business with another merchant,
whose“assets are £350 and whose debts are £250.
W{hz{t is their joint state?

8 A {;é(}rehant whose assets amount to £250 and debts

\ £350, joins in busivess with another, whose

o\ 288618 are £160 and debts £200. What is their
2N joint state? _

.\’\" 2. Thermometer Scales,

lixamine carefully the scals of a Centigrade thermo-
meter. If possible, obtain one thermometer in which

CEKTIGRADE

g, 2

the tube is vertical, as in fig. 1, and another in which it
is horizontal, as in fig. 2 :
Observe that the divisions appear to be equal, and that they
are numbered from a mark numbered 0. This is the zere mark.
(629)
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In fig. 1, the numbers above the zero are said to he positive,
and those below the zero, negative,

In fig. 2, the numbers to the right of the zero are positive, and
those to the left, negative. .

You probably know that the temperature is given by the posi-
tion of the surface of the lignid in the thermometer, as shown by
the scale. Thus in fig, 1, since the surface is opposite the 15 marlk
ahove the zero, the temperature is +15° (the sign ° denotes de-
grees). In fig. 2, the surface is opposite the 10 mark to the lefh,
of the zero, and the temperature indicsted is —10°, \ \J)
Bxrrcrse 1T (B) K7,

AN

4

Answer the following questions referring <o fhermometer
sGalea: O
1. Represent algebraically the temperatx{b;,\vhe-n the surface
of the liquid is: N\
{a) 12 divisions above tieero.
{6} 5 divisions belo‘w: the zero.
{c} at the zero. ™
{d) 100 divisiong&bove the zero.
(e} 15 divisionsbelow the zero.
2. The reading of a thextometer is +10°. Tf the temperature
' riges 15°, what ig€"the fina] reading?
3. The temperature*falls from +25° through 15°. What is the
final readin®d
&, The temperature falls 25° from + 15°. What is the final read-
ng?.\) :
. The tgmperature rises through 20° from —5° What is the
I reading?
6. ‘Bhe‘temperature is — 10°. Through how many degree divisions
/N must the surface rige in order to reach zero!?
7. "he zero of a thermometer is lowered through 5 degree divi-
’ sions. What will be the new numbering of the graduations
originally numbered, +15, —10, —5, —2, 0%
8, Water freezes at 32° ¥. and boils at 212° F. How many de-
grees are there between these ternperatures?
8. Alechol freezes at —112° . and heils at 78° 0. How many
degrees are there between these temperatures?

{1 23) 2
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2. Linear Measurements.

Draw a straight line BA (fig. 3), and in it mark & point O, |
If measurements made in the direction OA are positive, then

B O A

~C ? ra

Fig. 3 Q

measurements made in the opposite direction OB are mogative.
Notice that the direction from B to A is the same i the direc-
tien QA, and the direction from A to B ag the dj.reqp‘:goﬁ 0B.

¢ € ?
Exzrese IIT (o) \
I. From a point O, in a straight line,\mark off the following
distances in the directions indj@ted by the signs:

+8in, —4 i, —62 in.,,;-ffé-”i em., —58em.

2. From & point O, in a stra,igﬁf line, mark off OA equal to
+57 em., then from (A mark off a distance AB, —3-4
em. (fig. 4). Repressnt'algebraically the distance OB.

~ A
04 ‘B —> 57
i"‘ \ [T - -
’\ e Fig. 4

3. Draw a_ gti;aight line, and in it mark & zero point. Measure

off & distance OB, ~4-3 ¢m., and from 3 g distance BC,

,{3'6 om. What is the distance 0C% (Remember the sign.}

4. Broty a point O, in a straight line, mark off OA, +34 cm.,

§ “and from A, mark off AB, —6 cmu. What is the distance
\ OB? Why is OB negative?

m\J g Rotation,

N/ Imagine the straight line OA (fig. 5) to be pivoted at O, and
to be rotated without leaving the surface of the paper, -
The line may be rotated either in ilie direction in which the
hands of a clock move (clockwise), or In the contrary direction
{counter-clockwise or anti-clockwize),
If anti-clockwise is taken to be positive rotation, as is usual,

then clockwise is negative rotation.
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Looked at from the North Pole, the direction of rolation of the
Barth is positive (see fig. 6).

N
+
&N
O A W £
)
- o
s (“:3\
Fig. o Fig. 6 “.

Obscrve that the direction of the line QA cha.ngﬁs\as the line
rotates, and is completel} reversed when OA hag\iofated through
o 7N

"
< B
Fig. 7 ‘“x\
AN\

half a revolution, i.e. 180° or & straight auple, in either the positive
or negative direction (fig. 7). o

Exerade ' 111 (v)

1. Mark a direction OA{\ Then, using a protractor, mark a
direction OB -+35% from the direction OA, and another,
QcC, 25° o‘mr 0A. N
Measure the \ﬂg]e BOGC.

2. From a stanﬁai:d direction
OA, mark4 direction OB,
+808. Now mark an-
otherdirection, OC, —60°

OB, W 7
\ How many degrees is = ™
" the direction OC from
"\' v/ the direetion QA?
\/ 3. Draw the compass direc-
tions from & point O, as
ghown in fg. 8. s
From OX mark off an Fie, 8
angle +50°%; from OW,
an angle —35%; from 08, an angle —&5%, and from ON,
an angle 125°,

w7
/
m




2% EXERCISE III (D)

4. Bea lovel being the zero, express algebraically the height of a
mountain 3028 ft. high, and the depth of & mine 150
fathoms deep. (A fathom is 6 ft.)

5. Two equal toothed wheels are geared together. The first
makes 60 revolutions per minute in the counter-clockwise
direction. What is the direction of rotation of tho second
wheel? Represent the speeds algebraieally, O

6. Two pulleys are connected by a belt. The first makes 100
revolutions per minute in 8 clockwise direction, ahd\t-he
other twice as many revolutions per minute. Eopresent
these speeds algebraically. A\

7. One clock {A) is 15 min, fast, and anothes «B) 1s 10 min.
slow. Represent the exrors algebraically{ ©

8. One clock (A) gains 8 min. a day, another clock (B) loses
5 min. a day. Represent these ¢ 1ges algebraically.

9. A body falling to earth gains spee@at the rate of 322 ft.
per sccond each second. A Jedy projected upward from
the earth loses speed at the fade’of 32-2 ft, per second each
second. Represent thesc, ehinges in speed algebraically.

10. When a spring balance igtpulled, the backward force of the
spring is felt. If theweading is 12 Ib., represent algebrai-
cally the valae of ¢he pull, and that of the backward force
of the spring. o

11. A spiral spring.ean’he stretched or compressed. How wounld
you distingiish algebraically between these changes?

12. Ropresent55's.¢. and 1915 4.p. algebraically,

O™ CHAPTER 1V
N\
N . BUM AND DIFFERENCE

\) L The pupil is warned that the conception of addition and
subtraction usually formed from the rules of Arithmetic is not
complete,

In Algebra, & much wider view of these processes is taken, and
it will be scen that in finding the sum of numbers it is sometimes :
neccssary to subiract the figures. Tt depends upon the sign of
the numbers.

The teacher and pupils shonld construct in wood or cardboard |
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the apparatus illustrated in fig. 1, which consists of two like
scales with equal divisions numbered as shown.

One scule, A, is fixed and the other, B, movable. The two
scales are contsined in a framoe F.

H the material mentioned is not available, the pupils should
male a4 similar contrivance in their exercise books, the movable

scale heing on a strip of paper passed through loqps.\{srmed by
making two paraliel cuts through the page with a’genknife,
On both scales, it will be seen that the positivemumbers are on
the right, and the negative numbers on the Jéiyof the zero mark.
With the help of these scales, it is propo}ed to establish some
very important facts which should be/terfembered.

ExavrLE 1.—Find the sum of +9. and +5.

Find the +9 mark on the fixgdiscale, then bring the zero of
the movable scale opposite thig: + 9 marl, and find the number on

T3
/N S +8
TET
N T
- -5 ;J + B
Fig. 2

\¥
the fized chié"to which the +5 on the movable scale is opposite.
You will find’it to be -+14 (fig. 2).

Of se you know this to be correct.
I£ ‘this exercise had heen done by drawing a line 9 cm., Tong,
gnd“then extending it by 5 em., it would have been noticed that
““the second line (5 cm.) followed from the end of and in the same
N\Airection, namely the positive direction, ss the first line (9 cm.).

Tn the following emercises, the second number is added lo the first by
proceeding from the end of the length representing the first, in the
divection indicated by the sign of the second number.

ExampLE ii.—Find the sum of —9 and —B.
Find the —9 mark on the fized scale; bring the zero of the
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movable scale to this mark, and find the number on the fixed
scale to which the —5 on the movable scale is opposite,
You will find that the result is — 14.

Exampre ii.—Find the sum of +9 and —5.

Find the +9 mark on the fixed scale, then move the Jower
seale until the O is opposite this mark., The ninber on the figed
scale to which the ~5 of the lower scale is opposite gives &bdnce

the result, namely +4 (fig. 3). £\
3 4 +9 A "f R
iﬁry—wtm-m—m—"———j ¢*¢
= T T \‘_'4%
2 L M §
Fig. 3 :‘\\',’

In such a case you see that, to(ind the sum, the numbers,
regardless of sign, are actually subtected. .
Observe that the result is positive, because the number with

the plus sign is greater than that with the minus aign.
Notice that the —5 is meavured in the direction opposite io thol in
which the +9 {5 measureds,

Exampir iv.—gf;z’wB the sum of +5 and —9,

Find the 4-5<mark on the fixed scale, move the lower scale
until its zeromark is opposite the +5; then the number on the
upper scale’td“which the —9 on the lower is opposite, is the som
of +5 fi,\na~—9. The result is —4. '

\ & 3s =
” - A
O\ g TIII TTTT — =
™3 ANSE .
) g 2 h E
m\ .
\ 3 Fig. ¢4

Observe that the rosult is negative, hecause the number with
tilfile TUmus ign is greater than the number with the plus sign
(fig. 4). |

Note—The sign + stanids for addition also,

Thus 8+ (—5) means, to +8 add —5.

The small bracket is used to separate the two signs.

|

b
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ExErcise IV {a)

Using the scales as in the foregoing examples, find the sum of:

1. +15 and +6. 2. —3 and —8. 3. —8and +3.
4, +12 and —17. 5. —4 and --11. 6. —1 and +1.

Without using the scales, write down the answers to the fol-
lowing:

N

7. Find the sum of +8 and +5, and of 4 and —9. \ \/
Add, that is, find the snm of, .\
8. —8aund —5. 9. +8and —5. 10. ~8 and 45,

You will now see the reason for the following rules\for finding
the sum of two algebraic numbers.

(1} Ii the signs of the numbers are alike, add the numbers and
prefix the sign of the numbers.

(2} If the signs of the numbers are unhk{ ‘subtmct the smaller
number from the greater, regardless of algns, then prefix the sign
of the greater number.

EXERCI'SE}’»I.V (®)

Using the foregoing ruleg, fnd the sum of:

1. +12 and +8. L V12 and —8. 3. +12 and —8.

4. —12 and +8. \'\5. —20and —~5. 6. —20 and +3.

7. +20 and ~5_ 8. +20and +5.

9. Using the aca.les show that the result of adding +8—4+3—5
in ordgrg¥ the same as adding -+84-3—4 and —5 in order,
and/@s %dding +11 and —9, Le. the sum of the positive

dmbers and “the sum of the negative numbers.
Find ‘the valus of the following:
10: 23— 14+8-6—-2+7. 11. —14+3-16—2+10,
/™ 12 A ship gails B. for 2 hr. at 12 miles per hour, turns and sails
\/ W. for 3} hr. at 15 miles per hour, then turns again and
gails E. for 11 hr. at 10 miles per _hom‘ How far, and in
what di_rection, is it from the starting-point?

2. Difference.

Being asked the difference between 5 and 9, almost everybody
would say at once, four. In Algebra, however, this answer is
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incomplete, because the difference depends upon whether we view
the difference from the 5 or from tho 9.
Work the exercise on the Special apparatas,

- The movable scale is now used to measure differences.

" BxamprE i—Find the marks +5 and +9 on the fixed scale,
move the lower scale until its 0 is opposite -5 on the upper scale;
then the reading on the lower scale, which is opposite +9 onhe
upper, measures the difference between 5 and 9 when bhein the
number from which we reckon the difference. The ansyer's, of
coutse, 4, meaning -4, « \

This exercise eould have been stated as followsi “~\

Fiom 9 subtract 5, Answer, +4,

¢ _

Or the exercise might have hoen stated~“:i,s\ “ What does 9
become when 5 15 made the zeyo

Another way of stating the samc eXgroise is, ** What must be
added 10 5 to make 977 \

Measuze the amount by placing the Yower scalo so that its zere
is at 5. O

1t s seen that subtraction s thageverse process of addition.

Compare this result with that'of Example iii, P 28.
. You see that the rosult $sithe same as when 9 and —5 are
added. N\

Examrrg ﬁ.HPIa;;e;}she lower scale so that the zero is opposite
the 9 of the uppe heale, and see what reading on the lower scale
18 opposite the 5%aPtha upper scaic (fig. 5).

N\

RS _ Fig. 5

™

™ The angwer is —4. Thatis, —4 ig the differcnce between 9 and
*5 when regarded from the 9.

The exercise might have been stated as follows;
() From 5 subtraet 9, Result, —4,
(1) What must be qdded 0 9 to give H? Answer, —4,

Compare this result with that of Kxample iv, p- 28,

You see that the result is the same as when =9 and 5 are
added,
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ExampLE Lii—From —9 subtract —b.

In other words, find the diffcrence between -—9 and —5 re-
garded from —35.

Find these positions on the upper scale.

Move the lower scale until the zero is at —5, and measure the
difference. dnswer, —4. :

Comparing with Example tv, p. 28, it is seen that the result
is the same as that obtained by adding +5 and —9.

Exawrrr iv—From —5 subtract —9. ()
Placing the zero of the lower scale at —9 of the upper, (the
result ig seen to be 4. A\
N
Exaveie v—From —9 subtract +5. ¢*

Proceed as before. See that the zero of the Iower\scale is at
+5. The answer is — 14, which is the same as {hat obtained by
adding —5 to —5. N

ExawrLe vi—From +5 subtract —9, ,\

Placmg the zero of the lower scale af » 9, the result is found

to be -+14 {(fig. 6} R\
= o
RN L A_Z
k4 TR T T
= IIII"IIII"IIIII ‘)
§ g\.‘ | 14 B 2

Summing up th,e‘se exerciges, it is seen that:

(1 Subtmcﬁwga posztwe number s equivalent to adding a negative
number. "

(i) Su&x@ctiﬂg a negative number is equivalent fo adding a positive
numb

The yule for subtraction. is: Change the sign of the number to be
su&tmcted and then proceed as in finding the sum.

\“The following examples are interesting, because they 111u3t1'ate

\ t’hls change in sign.

Examrie i.—From 0 sublradt 5.
Place the zero of the lower scale at 5, and find to what reading
on the lower scale the O of the upper is opposite, dnswer, —5.
In other words, —5 must be added to +5 to give ; or, if the
zero is moved to b, the original 0 becomes —5.
(528) 2%
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ExayrLe ii—From 0 subtract ~5.

Proceeding as before, the auswer will be found to be +5.
You will notice that moving the zero to the —5 mark reverses
the direction of the length from 0 t0 —5 (fig. 7).

N}
11 $
A

1 { N
% o _+5 B AN

Fig. 7 « \/

A

O\

b

N

z’~:"
Note.—The minus sign is the sign for subtractign aléo.
Thus, $—(—5) means, * From 9 subtract \7,{)'\”"
We have seen that this is equal to 9+ 5. .0 )
07\
Exzrorse 1Vfc)”

Verify each result by Worki:;g:~{;he exercise on the special

apparatus. PN\
Subtract: R \\
1. 6 from 10. 2. "6 from —10, 3. —10 from 6.
4. 10 from —¢, L2 —10 from —4, 6. 10 from 6,

7. —8 from 10, (\J 8. 6 from —10.
By how muish does:

3. 18 diffey"from 107 10. 18 from —10?
11..18 .ﬁQm 101% 13, 18 from —101¢
ui@rﬁ'at: :
18,6 from (. 14, —5 from —35. 15. -3 from —-T.
“\,jyé. 5 from —5. 17. —5 from 5. 18. —7 frem 3.

'”\ " Find the value of the following:
V90—, 20, 4—(~9), 21, ~3—~(—8)—2.

22. 0—(~5), 23. 0—(4-5). 24, 9—(2-7).

25. 6—2+4—(5+3~1). 26. 6—(4-+2—9),

21, 32157 +6—(~4). 28, —(3~6+5)—(~2+8—4).
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MULTIPLICATION AND DIVISION OF POSITIVE
AND NEGATIVE NUMBERS

3. Multiplication.

Examrir 1.— +4 multiplied by +2.

This may be taken to mean, on our scale, two consecutive
lengths, each -4,

¢] . A\ ¢
o e
s o
That is, a length 8 (fig. 8). N
It is also a short way of writing two fours added, 1.6/ 4-!—4
It will be readily understood that the sum of any\nurnber of
positive numbers 13 positive, Thus, b fours added give +20.

The product of two positive numbers is positive, )
4

Exawprs L.— —4 multiplied by +2, L ©

This may be taken to mean two conse/cm{ve lengths, each —4.
That is, a length —8 (fig. 9). W M

_Fig. 9
It is also & short way of Wr{ting two munus fours added, ie.
~4+:(\ dy=—4—4==—38,
ExAMPLE iti.— +f}\%ufmphed by —2.
This may be taken to mean four minus twos addcd 1.e.
D2 (=T (=D (- 2=
Or that ¢ fee’ four has to be 3 subtracted numbcr. Thus, from
0 subtractstwice four.
N - 0—2x4 equals 0—8, i.e. —8.
Tké y product of a positive and a negative number is negative,

’lhe operations 4 X2 and —~4 X2 are contrasted graphically in
\ fig. 10, in which ACis 4, AB 4x2, and AD —4x2,

(-4x-+2) 0 ' (+1x+2)
- -4 N +4 +8
D A c B
Fig. 10

Observe that 4x2 is changed into —4x2 by turning AB
round A unfil its direction is reversed.
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BxXampLE iv.— —4 multiplied by — 2.

This may be taken to mean that twice minus four has to he 4
subtracted number. Now twice minug four iy minug eight, and
subtracting minus eight is equivalent to adding plus eight,

As an example of this, consider the following :

From O subirast twice minus 4.

N\
0—(—8)=0+8=+8,
s 0 (-43(;2‘)
R - ) +4 KT
B A N N D
Fig. 11 !

If AB (fig. 11} represents —4X 2, then —~4x «'%is obtained by
turning AB about A until its direction is re®€ricd, ie. until it is
positive.

The product of two negative numbers z'g:@sfeiri@e.

4. These examples, being fundamental’ arc so important that
we shall illustrate them in another wanner,

A produst can be represented, by the area of a rectangle or
oblong, The area of such a figivre is found by multiplying the
length by the breadth, AN '

EXaMPLE i— +4x +3, .'.'

If we mark out thedongth +4 in 4 horizontal direction to the
vight, and from th;e'}nd draw in the upward vertica! direction -

+2

+Z

A Fig. 12
N/ the breadth +2, as shown in fig. 12, we turn in the snti-
clockwise or positive direction of rotation.
 The boundaries of the rectangle can be followed round in the
anti-clockwise direction, We “an agree to call an area, enclosed

by boundarics described in this way, positive * and so illustrate
that the product of +4 ang +2is +8.

* This convention is used in Engineoring,
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Exanpre ii— —4 % +2.

The boundaries of the rectangle in this case are described in
the clockwise or negative direction. The result iz therefore —8
(fig. 12).

EXAMPLE it +4x —2,

The figure shows the result to be —8.

EXAMPLE tv.— —4X —2,

The figure shows that since the area iz described in the cmn-
clociwise or posifive direction, the result is +8. O

§, Summing up these results, we have: N

The product of fwo positive nurabers is positive. :

The product of a positive and a negative numbeg A8 megative.

The product of fwo negative Dumbers is posiirees

This is oiten stated briefly in the form: )

Two like signs give plus; lwo unlike szgn{ mmu&

In signs:
+ multiplied by +
— multiplied by —

i

=+, X multlphed by — = —,
+, o multiplied by + = -,

NS

I

.\ 3
ol
~ ) §

EXER’C'ISE IV (o)

1. 6 X 3. 2, 6‘22‘\—3 3. —6x3 4 —6x -85
5.1 1. 6\\1><1 7.1%x —1. 8 —1x —1.
9.3x —3 A0 —11x —% 11.0x3  12.0x0.

13. —2 x ONY/ 14, —32x5. 15. 3 X —6 X 5.
16. 4 x 45X —3. 17. =3 x —6x —2. 18, —2 x —2.
19, =200 =2 x —2. 20. 5 X —3 X —6 X 2 X ~43,

21. A'\ ock gaing 5 min, a day. If it is correct now, how much
% “will it be wrong 3 days hence, and how much was it wrong
3 days ago? Another clock loses 5 min. a day. If it is
correct now, how much will it be wrong 3 days hence,
and how much was it wrong 3 days agoe?
Select signe for gain and for loss, and for fast and for
glow, and represent these four resuits algebraically,

22, What is the sign of the preduct of:
(1) An odd number of negative numbers?
{ii) An even number of negative numbers?
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6. Division,
Division is the inverse of multiplication,

Exaymrres.

{i) Bince +4 multiplied by +92 gives +8,
therefore +8 divided by +2 gives - 4, £
and +8 divided by + 4 gives +2.

(if) Since ~4 multiplied by + 2 gives -8, RAY.
therefore —8 divided by +2 gives —4, O
and —8 divided by —4 gives +2. N

(i) Since —4 multiplied by —2 gives +8, 0,
therefore +8 divided by —2 gives —4;"";\
and +8 divided by —4 gives N

We lcarn from: 0

(1) That a positive number divided’b}a Positive number gives s
posilive number, OO :
{ii) That a negative number diided by a positive nuraber gives s
negative number, and that g népative number divided by a negative
number gives a positive number, '
(i) That a positive augiber divided by a negative number gives
& negalive numher, 4

1n signs: :m‘\"‘
+ di\ri%@'@’{fy + =+, - divided by + = —,
—diwided by -~ = .+, 4 divided by — = —.

The rule/#s seen to be the same as that for multiplication,

namcly,\‘:‘ “Fivo like signs give plus; two unlike signs give minus.”

Nﬁi&benmeous Examples,
. ‘j’_\ ote.—Except where indicated by brackets, multiplication and

',,\urlrvis.ion must be done before addition and subtraction,

Examern L—Simplify, 6 + 2 x ~3 6 % —4 -7,
2% 36X 4 7=ggyogrr
= 3L
ExamrLy . —Simplify, 6+2) x -3~ ¢ x ~4 7.
6+2) x —3-§x 4+ T7=8x ~3192447
=24 +24+7
=17
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Exercrse 1V ()

Divide
1. 16by3 2 15by —8. 8 —15byd. 4 —15by —3.
5. 3by15. 6. 3by —15. 1. —3byls. & —3by ~I5.
Find -
18 18 -3 , 6
LA 10, 218, A R
3 =3 = =X
1 0 —20 A\
15. Lof =4, e 9. 5. 22 O
16, BX ~340- 452 17 (@2—8)x —6— 4L2) 5.
18 —3x4-6x—2+12 9. 8725
J A \ Y4
_4-8 10 -2
. 3. (5-9)% —3.
. 48 1022 g 5668, (5-9)

23.

24.

Mo

\

Verify that (5 — 3) multiplied by {4 \]9 18 equal to
-8 x4+ B-F) R,

%

and is equal to 5><4—3><4»-i:5>< =3 x -7

—6-9 8 §—9
o e N
Bimplify (i) g (i) )
{..¢§8 —8
L\

(“}’ “ CHAPTER V

SYMP@LS COEFFICIENTS, COMMON PROCESSES
§,, WITH SYMBOLS

1’ n Algebra, numbers are often tepresented by letters.
“Draw a stralght line AB, of any length, and another CD {fig. 1).

/

A B
= {E HRiItg - —— — == -
C+ & units-. +D

Fig. 1

Tt is possible to perform ecertain operations with these straight

lines without knowing their length.

Let us represent the pumber of units of length in AB by the
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lotter @, and the number of units in ('D by the latier b, then, if
we place AB and CD together in one straight line as in fig. 2,
the length of the whole [ine AD is the sum of ¢ units ang b unitg;
which is writben (@ + b) unita, N
No simpler answer thap o+ ) is possible, since we do net
know the values of 4 and b, ~
0 a (a3} :

Ry P N a
A BC D e\
Fig. 2 e\

Of course, if we know g to be 3 in. and b to he g»ﬁ;u then we
can say that (@ + ) is 5 jn. AN
Letters or other characters wsed to denote ntinthers are called

symbols. )
%. An arrangement of symbols, suck ag\%+b, is ecalled an
eEPression, 2,

3. The parts of ap expression copndeted by plus or minus -
signs are called termg, Tt will be segh Jater that a form Im&y con-
sigh of many symbels, QO B

4. When an expression ig used b6 denote g singlo measurement
like the length of one line, it s 3 good plan to enclose it in -
brackets, for the eXPression\dnts as one symhol. :

Thus the length AD (figpa2) is (g + b), but it might have been -
denoted by a single letten, say .

3, The sum of ¢ andl. b, then, is g+,

Similarly, theﬁ@tn ‘of T and Y&+ y: of £ and 2, -2 -.

6. IfCDig siﬂotracted from AB, as shown in fig, 3, the number
of units of ledgth in AD i (@ — b), and this is the simplest state-
ment fO'J;\t];e result of subtracting b from g, :

\:\ O —f al-é ) —_—
. ‘\ A D e—o cB
A : Fig. 8

N as before, & simpler result could be obtained if we know the
\ value of a, and of p,

Thus, b subtracted from a4 =a—p,
Sim.ilarly, @ subtracted from b=p - i,
Y subtracted from z < 5 ,
T subtracted from W=y -z
2 subtracted from 2 — T — 2 and so on.
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7. Now suppose that the lines AB and CD happen to be equal
in length. Then, if AB measures g units, CD also will measure
¢ units, and on adding AB and CD together, we shall obtain a
line AD of fat+a units {fig. 4).

. O a 23
| [ S RS B
A BC D
Fig. 4 A
ne .Y
Now (& + a) is written more simply as 2q. o\

If another equal length, DE, is added, then AR is {a + a 42"15;)
or 3a units. %

Similatly, ive a’s added, ie. (o + 2 + a + a + a), a;e wnt‘oen
shortly as ba. A\

8. The number 5 in B is called the coefficient Of the term.

The coefficient indicates the number of the sx;nbols {or groups
of symbols} added together. y

Note~The term g may be taken $0 zhean also B times g,
although no multiplication sign is placed between the figure and
the symbol,

Remember, then, tha;t such a~mrm as Tr i3 a short way of

TN

writing seven x’s added, N
Le. Tx—a,-bm+m+m+x+m+a:

&

9, Egamples in Aﬂ@iﬂh.

(1) Add 3a to baw
5ameansa+a+a+a+a
3ameans&+a+a

Hence\ﬁé#3a=a+a+a+a+a,-+-a+a+a,
~,"\ ie. eight @'s added, which is written 8q,
R\ . ba + 3a = 8a.
<\; “Notice that the coefficient of the sum is obtained by adding
{algebraically) the coefficients (5 and 3) of the terms.
Thiz applies only to like terms: Bae + 3b, for example, cannot be
simplified in this way.
(i) Find the sum of —3a and 5a.
—3g + 5 = {—3 + bla
= 2a.
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(it} Find the sum of —bo end 3a.
-bg + 3a = (—5 + 3.
. = 2
(iv) Find the sum of 6a, —9b, —2a, +4b ond —0.
Sum of the terms containing ¢ = 6a — 2a - u = 3a.
Swa of the teyms containing b = —9b + &b = —5b. « LN
Sum of all the terms = 3 — Bb.

e ST

A\ ¢
2\

EXERCISGE V (A}

Simplify the following:
1, 2a + 5a. 2, 3z + 3. /a8l z + 2
4 3¢+ 2 + da. B 2y +y + V6. 22+ 6c+ 2¢ -
7.6z + 2 —z. 8 —6z+ %E~5. 9. 5p + 3p.
10. 8p + (~3p). 11. —5p k{~3p). 12.3a — 2a + 5b — 2
Write down algebraicallyl
13. 32 and 2b added, N 14. Bz and 2y added.

15, 5 and —2y added. 16. Bx and —2x added.

17. A weasel (ﬁ;e{n.}cmpty weighs 0 gm. If = gm. of water afe
puoured 1y, what is the tofal weight?
18. Whatiigvthe total weight of the solution formed by dissolving
agm. of salt in 100 e.e, of water? (1 c.c. of water weigh
) xt\l"gﬂl.] .
}%,I)ffaw a straight line 1-3 in. long and another 16 cm., long
AN Call the length of the first @ units, and that of the secone
N 1 units. Now draw a line (32 + 2y) units long, and anothe
) representing the sum of ~ 3% and — 2y units.
* Measure all the lines in om., and check your results.
20. Collect like terms, and so simplify the following:
3a+2b+4a+ 080+ a+ b+ e+ 3h+ e
2i. Simplify
30 —~2b ~4da +Bb+a—b-—-c¢— 3b -+ Be
22. Bimplify 3z 42 ~b—x + 2 — 3a+ 4,
apd find it value whenx = 2,0 = —1 and b = 5.

0.'
o

O\
\3
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23. Add the columns of the following example:

a+ 26+ 3¢
2+ b — Q¢ Find the value of each line and of tho
—bg —4b + ¢ gum when =1, $—=2 and ¢=3, and
_ thus check your result. Why would the
3b — 2¢
f value 2=0 not check the sum of the
o — 2b — 3¢ first column ?

s

24. Arrange the following expressions ag in KExercise 23, a@d
find their sum:
3a —Zx+y, 2r— 3y, —2a '-5$-6j,
8a + 3y, —ba 4+ x — By, 4a+xl$ly
Choose suitable valucs for these symbols,) and check
your result.

25, When = 2 and y = —35, find the {&Rte of gcach of the

following:
(i) 3z + 2¢. (i ) - Qy (i) 2x + 3y.
iv) — N2y 9T 2y
(iv) ~2z + 3y. {v) 2 + 3 (vi) 3 3
N T 3y

(vii) 8z + 2o — 3y, % (vii) 3 + 1 + e
26, When g =0, 0 = ;“2\and c=1, ﬁnd the value of:

lm—%ﬁﬁ. (i) 2& %0 _ 3¢

tTI 73
27. What do ths followmg become when a, b and ¢ are all equal?

Q%—%+c()m+%—&.my~w+%

lg;"D\ﬁerence.
,From Example i, p. 39, it will be readily understood that when
'"\S:awis subtracted from 8a the result is Sa,

ie. 82 — 3a = ba.
The coefficient 5 is obtained by subtracting the coefficient, 3, of

the term to be subtracted from the cocfficient, 8, of the other term.
The process may appear simpler when represented as follows:

8¢ — 3a = {8 — 3)a = ba.
Observe that the terms are like, 1.e. involve the same symbol.
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Similarly, ) 4a—Ta = —3a.
(i) 4 — Tu = —1a.
() —4a — (—Ta) = —ta -+ Ta
=3u.
11, When subtracting one expression from another, it is

sometimes more convenlent {though not often) to use the agthe
metical arrangement, thus:

From 3¢ + 2b — 3¢ take Za — Tb — ¢ + d. D
From  3a + 2B — 3¢ A W
Subtract 2 — T — ¢ + d RO

at 9 —2—d 4:@%66?’

By the rule for subtraction, page 31, thesbove cxample is
equvalent to: AN
To  3a+2b—3¢¢C
Add 20+ 10 -4d

a+ 9 >% —d Answer.

. Bxrrciss V (1)

1 @) From 6dteke 2a. (i) From 2atake 6a.
(ifl) From* 6a take —2a.  (iv) From —6a take 2.
(v) Fromhy—6a take —2a. (vi) From —2a take —6a.
(vil)yFeom 20 take —6a.  (vii) From —2¢ take 6a-
/»Bheck each result by working the reverse operation.

4 \Qt .
2 Uking the same values for £ and y as in No. 19, Ex. V (4),
A\ find straight Iines to represent:

AV @G- @ (@ - ). i) (@ — 3y).
w\} w {.W} {2& - 5y)_ (v} (_$ + Sy) (VJ) ("’:B _ ?J)
N (vii) (—2z ~ (—3y)). (vidd) 0 — (—2y).

In each case say whether the result is positive or negative.
Check your drawing by measurement and caleulation.

3. From 3a — 2b -+ Tc subtract 22 + 6b — ¢,

4, (i) From 2z subtract 2. (ii) From 2 subtract .
(iii} From O subtract z. (iv} From & subtraet ~x.
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5. From 2¢ — b + 3 take 3a + 25 + B

Check your result by substititing 1 for @ and 2 for b
in each given expression and in the answer.

6. Simplify
S — 2+ Te+2a+8b—c+ 3h.— 4c— ba
+ 3b — 5c — (2a + 2b + ). ~
Find the value wheng = —2, b =3 and e = —1. .
O\

7. Find the difference between: )
(i) —z and z. (it} 0 and a. O
(iii} 3 and 3z. (tv) —x and . 4”3},

. An empty crucible weighs # gm, When some copper filings
are placed in it, the whole weighs y gm. \Affer heating,
the crucible and contents weigh z gm. 4

Find {1} The weight of copper filinggstdken.
(ii} The gain in weight after.heﬁtlng

. A test-tmbe and its fittings weigh w
m gm. of pyrolusite and n gm {(pf chlora.te of potash are
placed in the tube and the whole Theated.
If the weight is then x gm what is the loss in weight?
If only the chlorate Ioses Welght what is the loss?

10. A copper ball weighs C goivin air, W gm. in water and M gr.
in turpentine. A

TI'ind \

(i) The lo\s}f woight in water.

(ii) Thelldes of weight in turpentine,

{1i1) he’ excess of the loss of weight in water over the
\ toss of weight in turpentine.

oduct.

We'bkave seen that 3z may be taken to mean three times z,
orsthrec z’s added.

f we were not aware of the number of s, we could denote it
\J7 another symbol, say 4, and write ax for the result.

This resuit gx may be taken to mean also g times z.

Notice that there is no stgn between the two symbols.

Similarly, we have:

T Xy =uay, XY= oy, —E XY= —ay,

—x X —y=u=xy, axXb=ugab ax —b= —ab,

da % 2b=6ah, axbxe=abe, 3axbx2=-~6abe.

=]

“w>
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It should be noted that of the product 6abe, 2, 3, a, b and ¢ ar
called factors,

“+d +
A (iii) 6] }
—UXG =gl axb=ah
&\
-~ “ - Lz ) ’:\’
(iv) (i ~
—ax-f=+ab ax-F=-ub % \J/
) 21(‘.’5
=& - 3 \ —&
Fig. 5 A\Y

Fig. 5 represents graphically the produety of: :
() @ and b, (ii) ¢ and ~0, (i) —-Q'\éa?d b, (iv) —0 and —b.

P
N

13. Powers and Indices. .
We have seen that: o x:@"‘—— ay.

Suppose now that z and"y happen to he equal; then, if we

represent these numbers by straight lines, the lines will he equal,
anﬁhe rectangle which represents the product

(M 0e 8 square of area 7 times 1 {fig. 6).
{This product is nat written xx, but 2%
(Spoken, & squared.) |

The figure 2 is called an index ({plural :
indices),

It indicates the mumiber of &'z multiplied :

X

e % together. _,
\\»Fig_ 8 The number 22 is called also the second -
& power of z.
S Similarly gt - g i & X z (the third power of x} ,;
\\ 7 B=xXgxrxgx Z X x {the sixth power of ). _'i
Remembering the rule of signs, |
L X p= g I X —pe= g2
—adxy - gz, 2 % —y = 49,
TEXE XKL= —g3 (for g Xx=—-zand —x2 x g = —a?).




®)

PRODUCTS OF POWERS 45

14, Producis of Powers.
To find 2® X a2,

z¥ means three x's multiplied together,

and a* means two 2's multiplied together;
then, W= e e xXexa
- S
L.e. {three plus two) «’s multiplied together, Le. x5, O\
Henee b R I \3
N.B.—z® X x® is not 2% bub 2. \

-
s
< 3

In words, the index of the power obtained by muliiplying given
. e p ned oY MULpng
powers af the same symbol us the sum of the indices of ¥iegiven powers.
Examprrs. ¥ X gt = gt = gt >
:L-3 P ._IS-H _.A}T
_._323 = _.w{-: +m3-rf, )
;c*yx;c2=x><’a::xa:><yxa:><:r:
——xx.mxxxa:xxxy
3 may,
xzy X —133’{]"" _JJ{2+319<3+1)
A = — TPyl
(z2)3, ie. a2 X Pt = AR gp At g — g6
o)

Note—When z? \hd:z: are added, the resulf is z* + . The
sum cannot be sbgted as a single term. Terms which contain
the same symhb”lé;'i:-o the same power are called like terms.

.\“.
'\\3 ExEercrse V (o}

B .ﬁ}b}nplete the following:

.'mXam 2 -z X —ag= dabxg=

4. —3a X 2z = 5. —fr X Jy =

6. By meavs of a figure, show that (z + 2) x 3 equals 3z + 6.
7. Multiply z + 2 by a. 8. Multiply « + 2 by 3.

9, Multiply = + 2 by 3¢ and by —3a.

10. Multiply 8a — 2b by —2r. Verify your answer by giving
numerical values to a, & and z.
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11. Taking straight lines 1-3 in. long and 16 cm. long respec.
tively to represent x and Y. construct figures to reprosent
(i) 6y, 1) z(z + y). (i) 22z — ¢).
{iv) 2z(3x — 2. (v} z{z + 2. (v) «(3x — 27,
12. Write down answers to the following: '
axXa, ax -a —agxq -—gx —gq
13. Bhow by a drawing that x x 3 — 3#2, and that \

{ .;\.

oA
Bz + y) = 822 + ay. o\
14, Write down the answors o the following : ~\ N
() 222 x — 5y, () 3ab x b2 (BN,
(iv) — (2. ) (22 o) e
(vil) (—3a2p)e. (Viii) (@) \SWix) (2025,

Find the value of each of the abovg when & = 2, ¥ =3
2= -8andph = -1, ‘O

15. The area of & friangle is half j;}igz} of the rectangle having
the same base and altitnde (beight). Tf the basc is b and
the altitude h, the aren isubh.

Find the areas of prjé‘zig’les having the following dimen-

sions; =N\
}335&’ Altitude
O 2 y
Ny 2z
O b 3h

& b 6
15. ,,'Qi?iéion.
EI‘%”\}:a.Iue of @ divided by & is written as g.

"\.f'fo the terms of the quotient are powers of the same symbol,
L) - gb N .
:\3 8.4, %’3, the answer can be simplified by cancelling.

5 * X
Thus a_=a Tt X g a><a=2
? as aXgxag @
)i
le, - or a5+a3=a¢5~3}=a2,
aS

thice that the index of the quotiont is obtained by sultracting
the index of the divisor from the index of the term divided. .
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{This iz of course the veverse of the rule for mulliplication, given on
p. 48).

Thus, . at + b = g¥d = gl =g,
milarl AP
& — = —d =
Similarly, A= &
—30x7
ER ‘"\
and = Brd
T e\
- T, &

It should be borne in mma}' that a product is always exactly dzmszbfe
by each of its factors, and that the quolient in cach case is, tﬁe product

of the other factors. O\
Exercisz V (D) . \\J
Simplify: (v
— g2 —nt 9-'1"5‘ 1 v/ xS
1 T 2. _—a 3-{3:?2.,. 4, —ﬁz,i.
Divide: )
5. —12a® by 4a. 16, —3b% by —2b%
1. 12a%h? by 4ab. \ 8, —8z% by 2x.
9. 3% + 12ab by 3a. (N 10. 2* — 2y’ by 2.

Check each, rm@er by working the reverse operation.

Simplify: .\ D
A/ — 2
Sry X Sagh\e 2ab X —3ae 13, &+ 2y
- aa-.'”f? S e
L a0 — . o
1 x ey 15, “-15a%3 3ab?® -+ 12ab
.\ —3dab
18 a&dd 3¢ - 2xy + y? 17, From 32% + 2z + 1 subtract
»\, —z% + Sy — 6y 252 — 3z + .
v 22 =% (g Multiply 2 by 3.
—4z® — Jzy + 5y* Y

19, Add 2 ana 2. Verify your answer by putting y equal to 4,
Y Y

20, From ; subtract g Verify your answer.
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91, Whenz = 2 and y = —3, find the value of:

-3 __‘3\1'2ff3-
D ‘g- : {i} 'g,;g*’ () A
. g
IR Ty ST
(iv} 172 + %ﬁ - % (v} z Y (1) O |

. GF L
99 " Divide the numerator and the denominator of p by &7

ivi 4 the denominator of it — B g
23. Dlﬂdﬁ the nume.mt,o! and the den ”J.‘.l

b
a8, and giving numerical values to @, b und £ “s}\.xm"( thab
the value is not altered. \\

. 2 % 15)% % 4 N\
94, Simplify: @‘T{—B n (“)"6"" .
16. Bpecial cases of Multiplication.

AN
Square and Square Root. 8
We have seen that @ X 2 = 2%

This operation ia called squdting. Squaring consists of

. multiplying & number by the sgtue number.

Thus, the square of — 3¢ isy—3a ¥ ~3a = 9a>.

17, The reverse opepétion consists in finding a nurber whose

square is equal to agiven number, The result is called a square
root of the givenipihber,

The dgn fos, the operation is v/,

Any posifife number has two square voots, For exarmpic, th
wumbershk/and —3 are hoth square roots of 9, since 3 X 3 = 9
and -3 —3 =9,

Yasdvithmetical work, however, if & is any positive numbel
thewymbol v is always understood to mean the positive squar

200t of . Thus v9 =3, VI =10, v1 =1, v2="114.
o *On this understanding, the two square roots of 2 are V2 = {1-414..

and —v% = {(~1414). In leral expressions it is customnat
tor use the symbol v to denote cither of the square roots. Thi

Vit* is either 4 or ~z. These roots sre often written togeth
in the form +x. {Spoken, plus or minus z.)

Exavrrzs,

VE = 485, Vs = 4g3 VIR = 1danps
Notice that in finding the sguare of a term, the index is doubl
fmd 1 finding the square root, the index is halved. '
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18. Surds.

Surds are roots which cannot be written in terminating form.
For cxample, V'8 is not quite 3, but 2 decimal something. The
decimal part neither recurs nor terminates. However, since
8 =4 x 2 and V4is 2, we can write ¥/ 8 more simply as 2V 2.

{Observe carefully that 242 means twice v'2 and not 2 + v'2.
Contrast this with 2%, which means 2 - .)

Similarly, VI8 = v8 X v2 =3v2 N o
V12 = V4 X V8 = 243, "\".\
Burds can be treated czactly as algebraic symbols. . O

Nl
2
!

198. Logarithms, 7.\

Another name for index is Logarithm (abbreviation) fog).

Thus in g3 , 3 is the logarithin, and ¢ is called ths base.

These facts are usually expressed as follows: )

The logarithm of a8 to the base ¢ is 3. /)

The statement means that 3 is the indeg{bf the power to which
the base @ must be raised to give the audwer a3,

10° = 1000, therefore the log of 100D to the base 10 is 3,

10° = 100000,  ,,  , q00000  ,  10is5,

The short way of writing these Is

logl000 = 3,

logf, 60000 = 5.
Similarly, '\“..:’Ioga{as) = 3.

Notice that the bgde is written to the right of, lower down and smaller
than the abbrevighon log.
A\ S

\ Exgromse V (»)
1. Fin@»];é square of:

LS, %, —3z, —5a?, 328, 4vz, v —z, Va5, 3(a + b).
Mﬁ'ﬁfi‘-’ind the square roots of the following. Verily your answers
\ 3 by squaring: .

262, OB, 406 &dy?0, 25{a + B)R
3. Why cannot you find the square root of —-9%
4. Simplify:

at V2 1 i eyt
'\/;—yi: 4—3"4} /J;—t;! 7:1?, '\/ZE -+ S8,



- valne of g, Thus, if g i, then 4g ig 4;

$
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5. Write as simply as possible: ‘
Vi, V5, V64, V10, V144, V12, V20, V98 VI,
W32, —TB, 3V18, 3v 39, zVv8, V'é-xﬁ’ \/32$4‘y2, Vi TR

6. Show that v4 x Dis equal to V4 X V', but thut v'b -+ 9 s

not equal 10 v'4 + /9, and that therefore v 4 - +/ 9 is,
rot equal to V13, .

7. Write the following as powers of 10, and state the loguyitho
of each to the bage 10: 0
1000, 100, 1, 16,000, 1,000,000 10 milliony >
8. ¥ind the following: 7\
log;25, log,32, log,64, log,64, 19,g;§’-~
9. Write down the product of the following imthadorm of powers:
2and 28, 9g4nq 24, 32and 3, {{34 and 253
10. What s logy(3* x 3%)2 ¢

8 _
Logarithms are more fully dealt with(in'Chap. X VIT, which may
ed.  \D

S

be read at onge if desiz

0. Representotion by Graphy,
The numerical value of, Yy, 4¢ depends, of course, upon the

. i ais 2 4a is 8, and so
0. The value of 4g hanges then with the value of @. A change

in the value of g 101 1 t0 2 makes a chauge in the value of 4a
from ¢ to 8, O

here is & ¥ery convenjent way of representing values which
are subject tp" change, bamely, by means of graphs,
You have Probably met: with i4 ip your lessons in Arithmetic
or Ggogmphy. Occasionaﬂy you meet with it in newspapers.
%l‘lg\following are examples:

Fig. 7 shows the smount of

{ R i cotton imported by United
Eingdom during the Years 1903 ¢ 9 ported by the

o 1912,
© Years are marked

y on the hor i th
of each vertigs] line repn soale pme: and the leng

: e3ents to goale ghe uantity of cotton
%mplmed during the year stateq g4 the foot, Ef the I)i’ne. Thus,
:;unggf, the quantity w83 20 million centals, ie. 2000 million
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(3) The lowest and the highest quantities are readily picked
out.

{4) Some ides as to the importance of the changes (increases
or decreases) can be quickly gained.

{5} An opinion ean be reudily formed as to whether there is,
on the whole, an upward or & downward tendency.

30
29 N
28 2\
27 "

- 7 P
26 \
o6
24 N
2 /
Pt ] $
g Z] ..\\
=20 = y
2o+

.
]

g

Mitan Centals (100 mition
i

19 3
: S
£
AN
i
K F I
Yagrigay ‘o4 05 ©6 oy o8 ‘og 'io ‘sz '1a
D> Fig. 7

{6) Eﬁ%ﬁtional eages stand out prominently.
{7)%A “close approximation to tho average value is quickly
ngde.” :
} JXf the heads of the lines be joined by straight lines, xise and
all are strikingly distinguished.

(ii) Height of the tide and the date.

Tig. 8 shows the height of successive tides and the date.

It is interesting to compare the graphs for several months, and
also to see whethcr the changes agree with the phases of the
moon. The wave furm of this graph is apparent.
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New First Qr -
gth. rfsﬂ-,qr g}n!i Lag‘h’;r
p

7] MoK

.
"
i
I
T
I

rFHT

T
H-[—H_'J_L."":- |
e n R i,
Mt

1

THT T A0

5
H
|}
HHH
T I T
];.I.IIIFJ

NS Fig. 8

{ii) Depth of a\a\rimmjng bath and the length,

Fig. 9 shows' irmi
o1 ik ‘f\“:‘fﬂ“ the depth of & swimming bath af places along

Therg.js. 2 i .
s, fpoctmen 2, UCOTNG these araphs which is of the
be\(s od to doteres famely, Hﬂf_lelj what sonditions can g graph
2 Tmine valueg which are not deﬁnitely shown by

Warked points? Refep to i
\.f mng bath at varioyg djstatrlll;esg I&EEE it Tong i P01 OF 8 swim-

g its length,
} Length
i5
230 a5 g Yeards

3!
5 ¥
25
Q.

9'

Fig. o
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The pointz showing the depth appear to follow -a straight line.
Draw the straight line, and-drop the “ depth line ” from the point
dencting 20 yd., and read off what the depth appears to be at
this plaee. Now this result is probably correct, but as to whether
it is absolutely correct depends upon whether the change in
depth, which we have found by measuring the depth at certain

2 ¥ |
Th : 3
a0-0 )
T o
~— N
ga e Y
| 1O 1
=
= 8 RS : ~'\s
+ Ay
oD
Ba :
T : . 7
2 e -
290 5 :
1t -T2 Cr . 5 £ 3 1E 9 19'
ST i C - ol =TT
o Pat e ga s LR e Madeh T
A
. T B
\\ 300 il
1
) u(Egan
= 1T
] ]
A\X =
A\, —
0 I
\*; T 0
QO fgalit] t
AR 5 ) 7
N Fig. 10

Places, iz uniform. The more messurements we make the better

judgment we can form on this matter, and, of course, the matter

could be decided definitely by examuning the bath when empty.

The eorrectness of the answer, found from the diagram, depends

upon whether the law suggested by the change in depth found at

gertﬁtin Places is followed throughout the whole length of the
ath, .
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{iv) Turning now to the diagram of the readings of ihe bam.
- meter {fig. 10), it is observed that there appears to be ng

uniformity in the sequence of the peints. They do not lie on g
smooth eurve even, Jike thoge of diegram 12,
You will notice that the reading for March

b {aEE
THH s0g

I
L O

We muost pog on
vals betw. i v . .
B Sl T bt
line Imdwa.y between the twg ;ozs;udmeamathn%ngi “éel diahwttﬂe
a E a !
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at a point which would represent midnight, the altitude obtained
1s 38-3°, which 1s, of course, ridiculous at the latitude of obser-
vation.

Again, at a’ point which would represent § a.m., the reading
is 3847, which also is out of the question, since the sun at this
time iz just rising.

The changes for a part of the day between sunrise and sunsef,

' Murch 21st, are shown in fig, 12 A
‘ On the other hand, this fignre can be used for values betwéeh?)
the times shown, for the changes are continuous bctwepﬁ)he

times of sunrise and sunset. AN
N
Al ¥
EE W sam T T L %
35 - 7] i ‘I : I ;
Ay Ea=a
= H i
= i T Tt . .
F. T BN L
L4 SSRACAIEEE
3?-{_ = 9 __;
4+ T i ’
: ' FIEEE L
P i b \| O R
o LNy 1 ' » Time
KAM, PM,
o Fig. 12

A\
21. We c@, ‘represent the various values of 4¢ in a similar
manner. &
Représent the values of ¢ along the horizontal line, and the
correﬁp%lding valnes of 4a along lines at right angles (fig. 13).
Ifshuared paper is uscd, the lines are already drawn,
o Atrange the values of @ and of 4a in a table, thus:
\/ - et

¢ = 'i 1 '] 4 Ii |3’m3._1I

2
] 5

|12 | 16 et

Mark the ends of the lines representing 4 by a cross { X ).
Now, what line do these end points follow?
Braw the line.

{a28) . . 8
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gs, or th

, bowever, som

expressed. simply, and we shall deal wit:
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n @ 18 positive, whe
when g is numerical

y small. Moreover, and this

e for a which will gi

Fiz. 13
gativa. Tt is true

ioht, and so o,
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gives correct values of 4q whe

See if this line enables you to findl values of 4a not already
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y cases the real connexion between the thin

ecting them, is wnknown., There are

functions which can be
some of them later,

%
weight of water is a funetion of the voluwe. The value ©

d is 8 function of the wei

N

fﬂhﬁ\ "
The value of 4a is a function of a.

When a definite valn

mined,
important, we can find o valy

In man
The graph

law conn
@ is zero and when g iz e,

great and when ¢ is
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we please for 4a, i.e. it Is possible for 4a to have any value what-
ever, and there will be a corresponding value for ¢ als0.

Exurcige V (P)

1. Examine carefully the graphs in fige. 7 to 13, and write
down the conclusions you draw from cach.
9, Make marks, say, a centimetre apart, on a wax candle.
Scrcen the candle from dranght, Light it, and note the time; A
at which the marks disappear. A
Represent time on a horizoutal line, and the lenjgth
of the candle remaining at the noted time by lines®at
right angles to the time line. K7,
‘After four or five observations, predict how, long the
eandle will last. \/
Examine the graph, and draw your contlhsions.
3. Fix a burette vertically in a stand. Hill'the burette with
coloured water, and turn the tap go\that the liquid runs
out slowly.: O
Using a seconds’ watch, tgke.the time at which the
surface of the liquid in the biwette passes the 0, 5, 10, 15,
ete., graduation marls. -
Construct a graph of 5Qur observations, examine if, and
draw conclusions.
4. Take a stocl spiral spring or a piece of rubber cord. Suspend
it from a rigid\' geket or nail, and to the lower end attach
a light pan.sJn‘order to measure the length of the spring
or cord, ereet’a ruler by its side. Increaso gradually the
weight applied, and note the length for each pull.
Comgtruct a graph of your results, and draw conclusions.
Py ¢

. :\ .
N - (QHAPTER VI

O

N
h
\ }

A

BRACKETS. EASY FRACTIONS

1. Brackets.

We have seen on p. 38 that when we wish terms, added or
subtracted, to be considered together and not apart, they arc
bracketed.

Thus, (3z — 2y) may be considered as one term, Like the
syrbol a.
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The bracket may have & eoofficient, e.g.
53z~ 2 ar —4(3z — 2y).
As a matter of fact, (3x — 2y) bas the coefficient 1, which it iz
‘hot necessary to write. '
Now the question s, suppose we wish 1o remove the brackes,
and separate the terms, what change will g coefficient make ?

The meaning of 53z — 2 may be taken to pe (3252y)
multiplied by 5, i.e. 8y x 5= 2 X 5o0r 153 ~ 10y opywe thay
take it as meaning five gyol expressions added. Thus; v

3z — 9y
3% — 2y
3z ~ 9y )
: 3z — 2y v
; - : 3T — 2 )
- B2 =0y )

. The result is the same
simpler operation,

as befm;e.t “The firt is, jaowevcr, the

I 1, and the effnct of
m“IthIJ’ng,;hy ~1 is to change the signs,  Thus:

—3r + 2y, without the bracket,
(ii1) ~4(§¢:jk W = —19p — 8y.

Q"\} x £

) “2(3x-2y) -
'\\“ ‘2-?( -2y 3 25) 2x g«
,'\ -_____-_ﬂ__‘-———__________
N\ B 2

N \ N
\ )
Fig. 1
To show Braphically th 2
- o &E ~ =
Let 2'ang Y be Tepresentad by the lineg ahownﬁm(ﬁt 41)
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The upper long line shows (3x — 2y) on the right, and
=23z — 2y) on the left of the zero,

The lower long line shows on the left of the zero —6x + 4y.

Tt is seen that the two results —2(3z — 2y) and 6;1: + 4y are
elike in magnitude and sign.

Note—Had (3z — 2¢) been to the left of the zero, — 23z — 2y)
would have been obtained by taking twice this distance on the
tight side of the zero.

2. Insertion of Brackets. O

In the reverse operation, to obtain the terms to (be jplaced
inside the bracket, divide the given terms by the n\u_mber it is
proposed to place 011t31de Thus: \

BExameLE.—To bracket —4z - 6y.

The terms can be divided by —2, givi '—\2 2z — ).
Incidentally, we have obtalned the i dators of —4x + 6y, for
—2and (2 — 3y) when multiplied toget.her give —dx + 6@;, and

_ each is simpler than the product. o\

Note—In an expression suc],l,gs;g@-z y, the line sepamting the

numerator from the denomimator acts like a bracket. Not only
2z, but —y also, has to_bg'\divided by 2.

% — -
—x—z--;y may be wr{tgen in the form {2z — y).

. \ : . 2
If the line or ink be removed; the result is 25 - % Or & — g

The follqaa\'ui{z;g\ case is very tmportent.
Show tbét (@ — b) = —(b — @).

%“” g —b)y=a—"b {removing the bracket)
us = —b- ¢ (rearronging the terms}
o) = —(b — a) (bracketing, taking cut the

common factor —1).

Bxeroe VI (3)

Show graphically that:
L 92— 3y) ~ 42 — 6y. 2. —3(x — 2y = —3+ &y
8 ——y)= -z + 1. 4 —zty)= LY

- N
#

N
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5. Five bags each containing 30 sovereigns and a bill showing a

debt of £8 are emptied out. State the total contents. N
Verify your answer to each of the following exercises, by giving
numerical values to the symbols.
Remove the brackets and simplify when possible.

6. 52z — 3y). T <52 — By). 8. z(%x — 3y).

9. ~z(2z — 3y). 10. —y(2z + 3y). 11 —y2z - 3,
12.a(a+b—c)+b{b+c—-a)+c{a+c-—b). PR,
13. 3a ~ 2(4b — be) + 3b - (4c — 30) — 3¢ — (4 + 35},

1. 3z — 2y) ~ 2(3z + dg) + 232 ~ 29). N
15. (2a + 8b) — 2(3b — 5a). o\(
16. 2(3a + 20) ~ 3(a — 3b) — 7(a + b).
17.—{a—b)—-(b-—c)—(c-—a}. \
. A\ .
Bracket the following; check your angyers by removing the
brackets, o\
18. 2z + 24, 19, —22 — 20" 20. -2z + 6.
21 3¢ — 6b + 12¢. 22\3a — 6b + 5S¢ + 954,
23. 3a ~ 6b ~ 5 + 954, w2 gt —gb — 2 4 o
25, a* -+ gh — gp + B2 V26, g8 — drty — aye,
27. Show that ~ (b — g) SHg — b).
Simplify: S ,
8. 228 (g 1022+ 2y i 30. 1—____0{; iz

3. Oongnléiz‘ hraekets.

It igjsbrﬁetimea found necessary to bracket terms which form

partyof'an expression already bracketed.

&

&

e kinds of brackets used are-

(1) Square [ ¥ {ii) Braées { 13
(51) Plain IX {iv) Vinculum, lige
or link . .

An example will show $he use of these brackets.
TU6a + b+ 38 - 43 ~ 55 = 5.
You will notice that the innermost hracke



COMPLEX BRACKETS : 61

Thus:

) —26a + b+ 38 - 438 -2a + b1}]. Vinculnm removed.

(iiy —2{6a -+ b + 3{8b — 12 + 8¢ — 4by]. Tlain brackets re-
moved.-

(i) —26a + b + 24b — 36 + 24a — 12b), Braces removed.

{iv) —12a — 2b — 48b + 72 — 48 + 24b. Square brackets
removed.

v} —60a — 260 + 72, Terms collected. .\:\’

N

4, As an cxercise in the reverse process, the pupil shoulgl’d%y
bo te-insert the brackets in the foregoing example, comprencing
from the lagt line but one. K7, N

Tnsert the square bracket first, and the others ad\sticcessive
steps, v/

oV
Exercrse VI (B) L&
Simplify: : PN
L — 2z By) — By + 2k
b — o - {2a(z + o) — 3aEl )
6o~ [20 — {3a — (5a + 3.
12z — 2fz — 3z — 4@ 2 — @)} + 2l
210 — {8 + (3 4 &) 2} + 5] + 3. |
.2~ [3y — (N 23y + 1)) + 242y — 32z — 1)) + 22l
Insert brackets rhere possible in the following:
" 7. 62 —,2@@)"11— 2abt. 8. a?x? -+ axy — o*yi
9. ab\r@w” — abe. 10, gx? + bx — cy® -+ dy. __
1. g™+ y) -+ ac. 12, (@ + bz + @) ~ (@ + D@ + )
~BXP+ gy + (p + e
NAL (p + gz + ) + (p + @y + 2.
B.(p+ e +y) — (p + gz —y). 16 a* +ab+ab ¥Vt
17. The long and short sides of a rectangle or oblong are re-
spectively @ and b units in length. Represent the perimeter
in as simple a form as possible.

Find the valuc of your result when a = 36 in. and
b=25in.

b

W 3

(=L
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(buat the highest power of 4 which j

62 _ FACTORS OF SIMPLE TERMS

18, The length, breadth and height of a rectangular room are
respefzi];ely a,b and k. TFind an expression for the total -
 area of the walls, floor and ceiling. :

mha®  whab  ahb?
o Tttt |
Find the value when k=632, a=4, b = 3, and\:
7 = 31432, :

20. Given that v/3 = 1-732..., evaluate in the shortest waf
8V3 + 256v3 — 7v3 — 1-364/3. O

5. Factors of Simple Terms. : N

The factors of a term or GXPression are sjmi;@i; torms ot ex-
pressions which when multiplied together préduce the term or
expression, \ _ )

The simplest factors are those which egunot be split up into
simpler factors. Fn Arithmetic, such faqgsi{slme called Prime Factors.

The factors of a%hz are a, g, 6,42 because @ X ¢ X b X &
equals a?b, and each is simpler thadaZhz.

The prime factors of 30 are 2 %8 5, because 2 X 3 X 5 = 30,
and none of the numbers 24:'}3 and 5 can be split into simpler

The factors of — 36q2p8 f&e ~2,2,3,3, 4, b, b, b, becauss
~2><2X3x~'3><a><axbxbxb-—u-—SGa%B‘

It is TNNeCessaty 10 write the same factors at such length, the
following shorberform is quite good: —(20, (3)2, a®, °. '
6. Highest-Common Factor ang Lowest Common Multiple.
It iscan easy matter to

2 determine the Highest Common Factor
(B.CH)n a set of algebraie torms,
Thus, I the terms g%, a?be2,

mmon factor, gince d to the

first or any bhj in neither the first nor the

second term,
’Il‘he El.l{}.n is therefore ®he, .
t will be noticeq that the mow, tains.

of each, symbol contained in all the te e, g s dowest ed in

all th erms. H.g g is contained in
secong :Z:ﬁ?’ the lowest, power b?mg a%, which a,'ppea,rs in the
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The tesult can be checked by dividing each term by the H.OF.
The quotients should have no common factor other than unity.

ashie ;

@ W |

PR ) Seither a, b, ¢ nor

“i®e be, d is contained in sl
' three quotients.

— aihe3d2

__gTbc_@_ - — 2R ‘
a’be ’ . 2 )

. R
It there are cocfficients, of course the H.C.F. of these alse must

he {ound. N
Thus the B.C.F. of 16a%b%, 24a2h¢?, —20a* b d? i{ 4g%bc.

%. The determination of the Lowest Comamon Afultiple (L.cM.)

of & aumber of algebraic terms is cqually sim{glfs.

JixanFpi.—Tind the L.o. of ~A\ Y -
a®bc, ofb%? and A geheid?.

The answer must contaln evm:yjéjrmbo] in the terms; but the
result, to be the Jowest multiplepttst not contain any power of a
symbol higher than the hightst appearing in the terms. Thus,
o4 in the third term is thevbighest power of @ in all three terms.
Hence the L.oM. mustiol necessity contain @t but no higher
power; for the sam e{‘aa}son the 1.0.M. must contain b3, €8 and d?.
The L.c.a¢. is thesefore a®h%cid?. .

Any .o caf be checked by dividing it by each of the terms.
The quotients ‘ghould have no common factor other than unity.

4 2
aggf = abc’d?,
’.‘\a4b303d2 Neither a, b, ¢ nor
= gled?, d appears m all three

‘L quotients. '

A T
\ w4 athiedde
vV Caes”

1t there are coefficients, the L.c.. of the mmmbers also must be
found. Thus, the L.c.m. of '

16a5h2c, 24a2b3?, — 90aibc3d? is  240atH3dR
Note—Tn m.o.F. and 5.cM. the result may be either positive or

negative. It is usual, however, to give the positive value only.
(6 E8) 5
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8. Easy Fractions,

The four processes, addition, subtraction, multiplicafsiou and
division, are carried out in Algebra in the same way as in Arith-

metic, .
Addition and. Subtraction \

ExamrLz i —Find ' <O
Find the r.ca. of the {denomi-

3 1 3 nators, _
e ~ gn T 306 Beduce all the Iraghions to this
% common denomjna.@i;, e.g. in the

% — 6b + 4¢ 3 e
T Lom, 6abe case of 5. dinde e into Gabe
} and multiplythe numerator 3 by

the quotienty e,

Exawery i, NY ‘
o\ The line under
8+ 2 h- g _ 4ab =8he each  numerator
de 2a JObae acts as a vin-
N\ culum.
- 2a{a + 2b) — 3e(b,£8¢) (4ab - 3be) Note the plain
P.f?—/ - Bac brackets,
< 2 dab B k9t~ ggp o gy Notice  the
NW change of signa
@ In some cases,
_ 2a? +:9t;§ '
2(\\ Multiplicntioy, and Divigion
N\ 2h 2
O Bxummi, L 0wy g
S R <
\J

. . 20th  ya 20% g, |
Examerr iy, 3e@: T g, = g N wm = %3 2ab
Observe thay ancelling, thyy s, ividi

and g denominator h
o 7 & commoy factgy
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Exercise VI (o)

Find the m.c.F. and r.c.m. of:

La¥fand 2%. 2. a?h®t and ab®® 3. at and %%
4, 10z%y® and 15a%y*, 5. 3ab%® and 6aPbe?, N\
6. a*bic®, «®he® and afbich 7. 2be, ac, Bab. A
8. 3¢, 2a, Bac. 9. 25, 5ab and 10bc. &
Bimplify: ~\ bt
10, 92 + b 11, o + 6ad 12.:_3@ + 3y
z T \Q\"?w + 2%
13,8, 2 m ¢, b N5, £ 4 2
T * T Tz 2z 4 \> a + T
16, 270 Try 2 S\ @ b
2h = 24 17'0,—53 20,—-%2’ IS’SXG
19.9 . ¢ 20, 5T + Y 5m
ed - d "y ‘h M3y
- ‘& ’
) _2'9’ a9 0 "HJ‘ _et1 ?a_—_i—_l"
oyt P 5 1
232_1{—3_3y—1~5 ?;y\+.5_7a:+_5
3 CERAE: 16
PN 3ar — 6bz _ 3ab
o, BTy (BT By o5, (a7 "~ 6xy
3ha \, o ’ ay — 2by
N\E 14bz
26. (5)\\1 2V3) x (4v3 - V3).
21*2{1\-73 +2 » 3br 28 v___ab . b
¢ f“ 20 Sbr -+ 8 "gb+ b2 a+b

A
\J%. Divide ab(ab + 4% byb.  30. Multiply 3b(a + 1) by 2a.



8 - FORMAL REASONING .

/ | CHAPTER VIif

| GEOMETRY
| Formal Reasoning, '

A student’s comprehension of s, proof in mg
| in Geometry, depends on hig a,bility to dra
i given data,

~
o
- 2\A
thematics, espeetally
W correct conclusions

The following exoreises arp aziomatie, that 30 elemen
48 t0 need no proof, They accur over and over agaitl in the subjeet,
The symbols ¢, b, ¢, ete., sy be taken O\tepresent, say, the
length of Tines op the size of angles,

o
&
\ ‘ i
a b ¢ :" b 4
Fig. 1 AN ' Fig. 2

LIftg=p and_b 2"5, Sompare ¢ and o {fig. 1).

s T 1 . o 1
to one fratker » }m}..gs oqual to the same thing are equa
2 Ha -—_-Tfljlzaqd.c ——--_d, te what is {a -+ £) oqual? (ﬁg 9).
Fhegxion, is, “H ] b
areequal *quals be added to equals the wholes
LD = b o, (@ ~ ¢} equal?

O Theaxjomis,“ﬁeualbt, .
§ mainders are equal.” 1 be taken from cquals the re

‘4 Yatp-py ¢, what
NS B Ifg = band p > ¢, compay
N B g db > y w&nd?' |
O an £, compare ¢ and ¢;
Other axiomg are:

The whele 1S greater

UM of itg parts.
The same fraction, f i |
of equa) thingy gz, :q(l,la\le.qual Fings ars b o fulves

he same multipleg of equal thingg g,

than itg pary and i3 equal to the

equal,
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FUNDAMENTAL PROPERTIES OF TRIANGLES

PROPOSITION I

Any two sides of a friangle are fogether sreater than the
third side.

This iy almost self-evident, especially if it is conceded that the
straight line is the shottest distance between two points. N

"N\

2\ AN
PROPOSITION II O
~ The sum of the three angles of a triangle is one straig;lflt'éfngle.*
Consider A ABC {fig. 3). '\"

. Take a strip of transparent paper and on it @erkl an arrow to
indicate direction. Use a pin as a pivot. N\
Pivot the arrow at A so that it points in th o direction AB.
\S

I\

)

&
| ’ -

&5

EVJK\ "D; R

N\ Fig, 8

Rotate thedafdw through angle A, Tt now points along AC.
Push it alongAQ without changing its dircetion until the arrow
head reaghel C.

Pivpt'the head at ¢ and rotate the arrow through angle C. It
NOW Puints in the direction BC. o :

JBixiw the arrow down to B, pivot it at B and rotate it through

"‘\ﬂle' Temaining angle B,

\/ .The arrow now points from B to A, that is, in the opposite
direction to which it originally pointed. In rotating through the
three angles of the triangle the arrow has turned through a
straight angle or 180°.

Observe that all the rotations were of the same kind, in this
case anticlockwise.

* Discovery attributed to Pythagoras (569-500 =.0.)
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&

&

'S )

Additional Exercises.

: Te:
Take a piece of transparent paper and add ht(he &ri;{ :li)gy '
a triangle together by tracing them so thet t! &; e po
and have the same point as vertex. The transpa
placed so that this point is at each corner in mmlcording .
Lettersthe angles on the fransparent paper ac

angles of the triangle, The angles together form a straight angi

Fig. 4

Place the transparent paper fight as in fig. 4, then as in
and observe thatpin fig. 4:Pygg§. have a 31_;ra1ght Line thml;%:llg
parsllel to AR, and in fig B3R straight line through B p Al
to AC, and also that the eXterior angle formed by pmducln[id 7
16 equal to the sum of the two ppposite interior angles at A &
Special Cases. \\

(@) If o trichgle has three equal angles euch 1s 60°,

(&) If one’angle of o triangle is a right angle then the other h
angles together’ equal @ right angle.
N ' S E
Oy
'\\..
A B B
Fig. 6

Now see if you can follow this forma) proot.
Given: Any &ARBC, _ _
Prove: The sum of its angles 4s o straight omgle.

Proof: Produce one side, say AB, to D {fig. 6}, and throu
B draw straight ine BE parailel to AC,
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Then since BE is parallel to AC, and OB is & tzansversal,
ZCBE = alt. ZACB,

and sinee ABD is a transversal,
ext. ZBBD = opp. int. £TAB.
But ZABC, £CBE and 2EBD together make a straight angle,
namely, ABD. "\
S £ABG, ZACE and £CAB together equad a straight angle,
QE.D.E )
NS
Exercise VII {a) ~\ Dy
1. Perform the rotation exercise (fig. 8) in a clockwise dlrectmn
starting at B. S
2. Construct a triangle having its three angles e{iual, and a #ri-
angle with one of its angles a right angle.
3. Two angles of a triangle are respectwelz 5D° and 70°. What
is the remaining angle?
4. One angle of a triangle is 727 andl %he other two arc equal.
What is the size of each of thg equal angles?
5. The angles of a triangle are repec’mvely z°, 2¢° and 3z°. Find
them. N

PRQ?OSITION I

The exterior angle fonﬁad by producing a side of a friangle is
equal fo the sum of %l;\e opposite interior angles.
Referring to the'previous proof and fig. 6,

since \<&" LCBE = £ACB

and O LEBD = £CAB,

by additioh,”

O ZCBRE + £EBD = £ACB + LCAB.
But £0BE + £EBD = cxt. £(BD.

£\
A\, ext. ZCBD = opp. int. £ZACB + opp. int. ZCAB.
\/ - QE.D.

Question.—How does the exterior angle formed by producing
a side of a triangle compare with either of the oppomte interior
angles? ‘

* When s proof is conciuded, it is usual to put the lettors Q.B.D. at the
cud. They are the initial lettcls of the Latin words, ¢ Quod erat demonstran-

dum,” meaning, * which was to be proved . They indicate that the proof
is ﬁmshed
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EQUALITY_ OR CONGRUENCE OF TRIANGLES
PROPOSITION IV

A triangle has seven elements, namely, three sides, three angles
and area.

Two triangles are equal in all respects, i.e. sides to sides,' .,\sh,gh
to each, angles to angles, each to each, and area to area, gfapiof

the following sets of conditions §s true;

{a) If two sides and the tncluded angle of one triangle arg?'és.pecta'-@:-ely
equal to two sides and the included angle of the other £

(B) If two angles and o side of one triangle are Féapéctively egqual
{o two angles and ihe corresponding * side of thé other.

(It follows from IT (p. 67) that, the third ngles of the triangles
also are equal). N

(€) If the three sides o one triangle_gib, féspectivel equal to the
three sgq;es of the other. ! " We’\ ” vet

These sets of conditiong are verysimiportant and must be re-
membered, ' ™

Note—Triangles equal fn qlljtzésbects are often called congruent
triangles, N

. ) 3

Proofs of the GongrU{aﬁne of Triangles by Superposition.

'Gomjmcm (a,).—,{f two sides ang the included angle of one

le are regp tively equal to two sides and the included angle
of another trign;l(t;\, the triangles are equal in g]] respects,

X
. C F

Pre&ims?nary.—-PIace & piece of tpy
- : nsparent paper ADEF
g%. 'SF Bé[a'rk I pencil 4 BCeWrately -ag posgr;fe t]?ff e;idesDDE
a.ccurateiy ?élgieg&rif]fé ir]; Sec that the incfygeq angle EDF is
iy pied, ¢ What the poings and F ape correctly

0o _— .
Treaponding gide A€ Opposite equal angles,
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Remove the psper and join the ends of the lines. Letter the
triangle ARC and test your work by seeing if your triangle ABC
fits ADER,

Given: AABC and A DEF with

AB = DE
AC =DF
includ. £BAC = inchud. ~ EDF. A
Prove: BC = EF ~\
LABC = /DREF A
LACB = /DFE G

AABC = ADEF in area,.m’\ﬁ'
Proof: Place AABC on ADET so that A fallspa'D and AR fies

along DE. AN

Then AC will lie along DF, becauge, L BAC = / EDF,
and Bwillfallon B, becaude™ AB = DI,
and Owill fall on F, heowtse  AC — DF,

and since BC and EF are straigﬁi{‘lines fithing at both ends, they
entirely coincide, and are the¥ttore equal.
Bince all the boundarigs\coincide,

ZABC = £LDEF, £A€B = 2 DFE, and AABC = ADEF
in arca, \\ QED.

A \ Exgrorse VII ()

1. Turn:tﬁ&\transparent paper over and notice that the triangles
aerstill equal, in all respects, although not similarly placed.
. '.f’&ou may meet such triangles.
2.5Gonstruct the triangle two sides of which are 2 in. and 3 in.
&\l respectively, and include the angle 60°.
N/ Measure the remaining side and angles.

Conprrmon (B).—If two angles and a side of one triangle are
respectively equal to two angles and the corresponding side of
another {riangle, the triangles are equal in all respects.

Lrelimingry.—Trace on transparent paper side DE and angles
EDF and DEF of the ADEF (fig. 8), making the linea DF apd EF
so short that they have to be produced to mest. Remove the trans-
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parent paper and using a ruler produce the Iines to meet, Letter
the triangle ABC, and see if it fits ADEF.

Given: AABC and ADEF with

ZBAC = /EDF
ZABC = /DEF &
AB = DR (fig. &),
Prove: AABC = ADEF i all respects, : N\
Proof: Rince the angles of any triangle together equala t?é.ight
angle it follows that ' ’ AN

Temaining / ACR = Jfemaining ADI{‘E:\\’

> F
o\t

A

A B ip E
Fig, §

. 3

DEIJ’,IMB AABC on ADI\ﬂF 80 that 4 fallf_:. on I} and _AB lies along
Then B falls $55~

md 40 1
and B():\hxeg

because AB = DE,
along DR becange £BAC = ZEDF,

» Pt. C must fall some-
F is the only point
n F,

This theorem may alsg

are equianguler grg if a side

If two triangles
side of the other, the 17

[ oneisequaltothecm wonding
angles are eguf 4y, all gespects, “oponding
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Exzrerse VII ()

Construct the following triangles:
1. Bide AB = 2 in.,, LABC = 60°, ZBAC = 40°,
2. Bide AB = 2 in., £ACB = 60°, ZBAC = 40°,
Measure and compare the remaining elements, You will realize . £\

why for complete equality the triangles must have their corre-
sponding sides equal. oA

Coxprrion (c).—If the three sides of one triangle are equalito ’
the three sides of another friangle, each to each, the iriangles are
equal in all respects, ?

A B '
Fig. 9.").’“

Draw any A ABC and from it}i':’oﬁstruet another ADEF having
DE = AR, EF = BC, and DF= AC, starting by drawing a line
DE equal to AB and using{dompasses to find the point F (fig. 9).

Given: AABC and ADEF with AB=DE, AC=DF, BC~EF.

Prove: AABC s }}})EF in all respects.

Proof: Place AWBC on ADEF so that A is on D and AB lies
along DX, ¢

Then ]iﬁ’iﬁ on B because AB = DE  Next, C lies on the arc
of which\}¥ is the centre and DF (= AC) is the radius; also, C
JiGT on'the arc of which E is the centre and EIF {= BC) is the radius.

* BusTis the only point common to both arcs on that side of DE,
~aud therefore € falls on F, and since the sides are straight lines,
\ A0 lies along DF and BC along EF. Thus the triangles coincide,

and are thercfore equal in all respects.

Hence ZABC = /DEFR
£BCA = #EFD
£BAC = (RDF

and AABC = ADEF in ares. Q.E.D.
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Exrprome VII (D)

1. Construct the triangle whose sides are 3", 4", 5”. Measure the
angles by protractor and compare them.

2. Construct the triangle whose sides are 27, 3%, 3", Measure and
compare the angles. '

3. Prove that the triangles formed by joining a pair of opposite |
corners of an oblong are equal in all respects. \ \)

\

h !
7%
S 3

PARTICULAR TRIANGLES 1s
The Isosceles Triangle,

* This triangle has two sides of equal length (S dkosceles ” means

N
A N\

&

* equal-legged ).

Fig, 10

x’\' N/ 4_..
Infigi10, AABC has AC = AB. Couvi
10, . Lopy b on fransparent paper,
andfold the paper so that € falls on B and AC Hes Egong A%,I;ihe
c e (AD) runping through A and cutting BQ at D,
¢N" Observe thas: :
>" ) The angle at € fits the ansle ot B ; ;
tho sl s eg o he angle at B, 1.e. the angl.es opposite

(n} The crease (AD) bisects the angle at A,
{iti) The crease biseots the base BC and is at right angles to it.
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PROPOSITION ¥

Tae angles opposite the equal sides of an isosceles irtangle are
equal.™

Given: A ABC with AC = AB {fig. 10}
Praove: LABC = £LACB, : N

Proof: Let ~BAC be bisected by straight Line AD. (This does -
not affect the other angles.) ,~~<\\""’

Then AABD and AACD have ' AN
AB - AC ON
AD = AD \,\\"
and incinded ~BAD = included 2 CADLY
. AABD = AACD inall 1’951)&55&, (CoNDITION a)
and . 2ZABD = /_ACtB\

But £ ABD is the same as ZABC aﬁd 2 ACD) as 2 AOB.

N/

. LABC SWACB. Q.E.D.
o/ £
(A} (B)
Cl

. Fig. 11
N :
\'"\, * Avother proof for Condition () (p. 73).
" Given: AABOC and ADEF with AB = DE, AC = DF, and
BC=EF (fig. 11).

Prove: AABC = ADEF in all respects.

¥ The PI‘OO'E of this Propcaiﬁon a4 given by Euc].id_ (330—275 '.B-'?-) was
tamed “ pons asinoram "~—the hridge of ases—a bridge over which the
dull-minded could not pass.
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Proof: If one of the angles of AABC is obtuse of right, let it

be C. Place AABQ so that A falis on D, and AB lies along DE,

and so that C falls on the side of DE opposite to F, ie. at O
Join OF. ' :

Pt. B falls on B because AB = DE.
Now since DF = DC(AC), ADCR is isosceles,

_ " £DCF = /DRy, O\
and since BE = EC(BC), ABCF is isosceles, N
* ~LECF = /EFC.
By addition,” N

vhole ZDOE = whole , D, .
ie/ ZACB = /Dp

[

In AABC and ADER PN
Bince - AC = DF apq BC ="E?i‘“
and incld, ZACB = inglg; XDFE,

+ On each gide of }g\tra

- What!
82'a bage line

- Produce the equa] giq

AABC = ADEF iy a7 respects by Conprriox (). QE.D.

o8N

Exendise VII (g)

- Write down the

otheh, Squal elements of AABD and AACD
(fig. 10). L5

i ight line BC Construet an isosceles triangle.
Nme the dther points A and [) and joi g

: 1 traight
live,, Tegg whether AD biseot 3 the e tY 3 straig

’ Be and
BD’%’"and 13 perpendicular toB BC. anel the angles BAC and :

kind of Itiangle ig formeq by j
ine

: 17 lon, constrwet aq . |
sides of whic areg 13" long a1 isosceles triangle the equal

tide. Proye that th
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8. On a base 13* construct a triangle cach of the other sides of
which is also 13"

The Equilateral Triangle.

An equilateral triangle has all its sides cqual in length., It
follows that all its angles also are equal since any two are equal.

Each angle is therefore —1—%9" = 60°, .
Make such a triangle and test the angles. PR N,

Nl

Exrrcise VII (i:') )

1. Btarting with the angle of an equilateral triangle; construct
angles of the following sizes, 30°, 15°, 48390°, 75°.
Test the results by protractor. O
2. Divide a circie and its circumference 'n‘tg\six equal parts by
radii each making 60° with the néx}t
Join the ends of these radii™un order by chords. To
what length is each chord egial?
Which 1s the longer, an areior the chord joining its ends?
Which is the greategydhe whole circumference or six
radii? N\
Which is the greater, the circumierence or three times
the diameter? N

The Right-angled Triangle.

As the name jmplies, this triangle has one of its angles a right
angle, The othér two angles together equal a right angle. A very
important .Kéla;ﬁion exists between the sides of this triangle, the
discoverer béing the Greek philosopher Pythagoras (569-500 B.c.)."

O\
N PROPOSITION VI

e
~

O THEOREM OF PYTHAGORAS

In a right-angled triangle the sum of the squares on the sides
forming the right angle is equal to the square on the side opposite
the right angle. (The side opposite the right angle is ealled the
hypotenuse.)

The truth of the theorem may be demonstrated as follows.

If the lengths of the sides of the right-angled triangle in fig. 12 (1)
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are @, b and ¢, ¢ being the length of the hypotenuse, then it ig
requited to show that '

at + b = 2
Infig. 12 (2) the squares * and b2 are placed side by side, making
a1 area equal to their sum.

The triangles marked A and B are each equal to the given
triangle in fig. 12 {1).

X 3}

L - Fig, 12 ANV (@)

H triaugle A is turned 1, posit'ro’liz“A and triangle B ¢ iti
By, then from the ageq of the bosquar ate on t pOSleUI_l
teugn g D e ’tw Bquares the square on the hypo

N Y

It follows that, ”‘\ af =2 _ pa

and : \\ bt —

=N Bxerorss V11 ()

S\ DL Construct 5 righ

\

3

t-angled triangly Wlth the sides forming th
:E‘};tv&;;%l; fh af:;nilhf respectively. Measure tlgle ](;I)"I;g;gnm:
8 it i I
- 3 plus the Square of ';iui]i:toifslt N eq-lllmil ” t2}15e nare of
- ATectangle iy 97 | " bro i the loas
the Bagencans ong and 13" hroag, What is the length of

3. Co 2 i
nstruct & square Whose are ig twice that, of 4 given square
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4. By the method suggested by fig. 13, find the sides of squares
respectively, twice, thrice, four times, ste., the area of the
square on a line of unit length. The sides of these squares
represent v'2, v'3, v 4, ete. Check your drawing at v'4.

L] A

. Fig. 13 .\“\';

5. Construct a square whose area is half that of @ \given square.

6. Prove that the bisector of any angle of\an' equilateral tri- -
angle divides the triangle into two)equal right-angled
triangles. ¢ \

7. Find the remaining sides of & tridnglé whose angles are 30°,
60° and 90° when the shortesfiside is 10 cm. long.

Y

8. Find the altitude of & square pyramid the side of the base of
which is 4 om. and the glant edge 6 cm. '

'I‘B;)POSITION v

The Area of & Tridngle. -
The area of a\triangle is half that of the rectangle having th

same base and‘altitude. _

. (Altitudeyds/the height, as measured by a perpendicular to the
ase.), (v

o

N\ F c E

1
1
I
1
1
1
1
t
I

A B 8
Fig. 14

ABC is a trisngle, and ABEF the rectangle having the same
base AB and altitude CD {fig. 14).
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Tt in readily seen that AADC is half of rectangle ADCR, a1
ADBC ia balf of rectangle DBEC. Adding the triangles togeth
and the rectangles together, the whole AABC iz half the who
roctanglo ABEF.

The area of & triangle is therefore half the product of the bai
and the sltitude.

Tt follows that trisngles having equsl bases and equal altitud
are equal in ares. N

Note.~—Any side may be regarded as the base, but the altitd,
must be messured by the perpendicular to that side {or that sid
produced) from the opposite point of the triangle. \+

7°%&
S

Exereise VII (m) (¥

o\

1. Bhow thatthe aro of o right angled rinngle3 Balf the product
. of the sides forming the right angle. \J

9. What is the area of the right-angled~triangle of Exercis
Vil(0)1? Now regard the hypotenuse as ti%e base, measur
the altitude from the hypotémuse, and caloulate the are:
from these dats and comparé the result with that calen
lated from the sides forming the right angle.

™
e

L\ THE CIRCLE

\M Dlameter.—Oun p. 18, it i
. . 18, 1t is stated that on
:!“ the y&ntﬁ .pmblams of Mathamtll,cs is to find the relatio
Mmhh@ ‘: oamr:ﬁ:rcuce and the diameter of & circle. It he
bt l:lo:l D t the aumber by which the diameter mu
e rfm ot :ac tam !.ll)m lalﬁth of the_ eircumference cann
p ; i:'mnding. 7, but only approximately. Its decim

) rehimedes (287-212 n.0.), who might b

D o A-213 b.0.), who might be called the very gre
\ g::d thar of l‘-nstmnns. abtained 8 pumber often used tog—éda

tao yourself got somewhers near the number by vario
The following ate & faw:

; Take :hthh as nearl
easre the greatest di
a putivetly eirt'ulara o
but there may be
o 00T meary

a{a circular as you can get.

fice mcross it at various places. T

lt:;: :llz?e distances wonld be equag, of conr:
ot moee, 80 find the average of tha

reman thia average to be the diamet
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Measure the cireumference of the plate with » taps measure,

circumference, 316"
average diameter’ OB 107 15,

2. Get a wooden cylinder such as that used as a model for draw-
L.

Measure the diameter as before,

Place o band of paper round the cylinder so that it elightly over-
laps. Male a pin-prick through the overlap. Remove the paperf )
flatten it out and measure the distance between the pin-prickss

Calculate as in method 1. A

3. Draw a circle of definite diameter, say 33 in. On alstrip of
transparent paper draw a long straight line. The objoctjs to lay
off the circumference of the circle as closely as possiblgron to this
straight line, ’

Mark cleurly one end-point of the straight linedind a starting-
point on the circumfercnce (fig. 15). 1@9} the transparent

Caleulate,

Fig. 18

Papér so that these points are coincident, then using a pin or

~\Compasses point s pivot move the strip of paper se that o short
)piece of the straight linc lies on a short are of the circumference.
Move the pivot to the other end of the short arc and in this way
cover another short arc, continuing in short steps until the point
of starting is again reached.

Mark the final point on the straight lire clearly and measure
the distance between the beginning and end points, and use it as
the length of the circumference of the circle.

Calculate as before.
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In these practical exercises you should obtain & number some-
where near 3-14. A more &ceurate number is 3-1416.

Archimedes found that the number lies between 33 and 31
You can use 3% without great. error,

The Greek letter (pi) is used to denote the rumber,

It shonld be memorized that:
{i) Circumferenge — diameter x 82

1) Digmeter = circumference -~ 3L K )
{ii)) If ¢ is the circumference and 7 the radius, then ¢ %
_Area of a Circle.— Tt iy evigens from fig. 16 that the“whda of a
cirele is less than four times that of the sguare on g r?dius.
B : AN

i

T

HH
1T

|

A O N A
LI
T 70

[T

i

A"
1]

T
R

o |

‘.F_l'

\\ - Fig. 15

The area cazingt be caloulated exactly 1, tif
the Little SGUALES in the eircle (. 16 agc’i d:l ide Ty ockon oy
the numbeh of little 8quares i]:a(ﬁt;%e Sciuare vide the numper by

- o8 4 radiys v, i
get ags it sbmewhero por. the number 95 tadiug you will

. “fuick to count, the little squares ; ‘

piede), rejecting those Jagg than half anq cognti;(;, ;rsl 31:;0?1?}17

y Er?;lts; r:{:ai;l t]ilalf. Subtractmg this nampep from the number

Q\; ¥ i € square on the radius, the number in & quadrant

Exauriz: Numpe, 10 4 corner pigee ~ 21. '

. » & quadvant - 106 - 91 = T4,
s » the fall gipele 9 x4 316,

Ares of cirele 316
. Area of Squaze on g radius ~ g = 316,
{214 in the corpe; Piecs giveg 314, a bettep result 3
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- Remember then, _
Azea of circle = 3% times the area of the square on a radius
= 772
Exaymrre.—If the diameter of a circle is § in., the radius is
3 in. and the area = 3% X 32 ~ 31 x 9 = 28% sq. in.

Exmpcise VII (1) O
'N\S ¢
L. ¥ind the eircurnference of each of the following clrcle‘:s\ '
Diameter: (3} 10 om,, (ii) 10} in., (i) 28 in. A
Radius: (iv) I ft., (v} 35 em.,, (vi) 13 f. L ¢

2. Tind the arca of the circles of Exercise 1.

3. The diameters of two circles differ by, dﬁhhch. What is the
difference in their circumferencegd \,

4. The cireamference of o wheel is 44" What is its diameter?

5. If the circamference of thewpéi?.th at the equmator is 25,000
miles, what is the diamefer, assuming the equator to be

5

circular? N\
6. Find the area of the {i}cle of circumference 44 in,

7. Find the peri e@:ﬁf a semicircle the straight side of whick
is 10 e¢m. m\

8. The pe.rime\témf 8 semicircle 13 36 in.; find its radius and area.

8. What ie\:the area of a triangle whose base is equal in length
to-the circumference of a circle and whose alfitude is equal
Yorthe radius (r) of that eircle?

10.«Bhe perimeter of a figure'is the distance round its boundaries,

(" Draw the following fignres, choose suitable symbals,

™ @, b, ¢, cte., for the length of the sides, and wrife down
\ in’as simple a form as possible their perimeters.

(1) A quadrilateral. (i} A square. (iii} An oblong.

(iv) A parallelogram. (v) A rhombus. (vi) A triangle,

(vil) An isosceles triangle. (vii) An equilateral triangle.

11. Construct & semicircle and a quadrant of a circle, and write
down the perimeter of each in terms of the radins.
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12. Choose suitable symbols for the dimensions, and write down
the area of each of the following:
{i) A rectangle, - (i) A square.
(i} A parallelogram. {iv) A triangle.

13. A trapezoid has only one pair of opposite sides parallel. Con-z
struct one. Draw one of the diagonals, and the figure will
be seen to consist of two triangles of the same altitude.y,

H the lengths of the paralle! sides are denoted by.@and
b, and their distance apart by k, show that the azedvef the
figure is Thia + b). : N

S

“14. Show that the area of a circle is CT, wheracis the'\éi;-'cumference
and 7 the radins, 2 O

16, Obtain expressions for the area of thKfiha.&ed portions of
figs. 17,18 and 19, N

7

i6, The volum f 4 Prism is the

; roduct of the the b
andvbhealtitude of the pri P e areg of the base

Chgose suitable symbols for the dimensions and state
@bmcally the volume of the following {figs. ’20, 21, 22

.

Rectangulay Triars
: riangular
Prism rism Cylinder
Fig. 20 Fig. 21

Fig, 22
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I7. The volume of & pyramid is one-third that of the prism
having the same base and altitude. Find the volume of the
fellowing (figs. 23, 24, 25):

b
Rectanpular Triangular v "’}:mle
Pyramid Pyramid v’
Fig. 28 Fig. 24 W\ Tig. 25
AN
RIs Y
\ N

CHAPTER VHI
SIMPLE RQDATIONS

1. Exawere i.~Cousiderthe following little problem:

A bay of sugar (fig. A\and 2 pound weights in one pan of a
balance, balunce 6 pos&ﬁd‘fﬁeigﬁts in the other. What is the weight of
the bag of sugar? 5,

Now, in wejghing, we usually put the things we are weighing
alone in one pay;

What walild "be the effect of taking the 2 pound weights off
the lef &é}d'pan_ '

What\geould you do with the other side to restore the balance?

Yoh would, of conrse, take 2 pound weights off,

_(The bag of sugar would then he seen to weigh 4 pounds.
\"\; 'Thl_s can be put down very conveniently in Algebra. _

Write 2 for the number of pounds that the bag of sugar weighs,

It is now our business to find .

We are told that 2 + 2 equals 6; written

T+ 2=6.
* Packets of pen-nibs counterbalanced by loose pen-nibs will be found

;::;g“lt.sfor practical exereizes. The results can bo verified by opening the
inits,
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This is called an equation, and from it we have to find the

value of g,
To get & left alone on one side, subtract 2 from each side; then
=14 2;
ile. » =4,

N
You will observe that if we consider the number 2 to have heen
carried $o the other side of the equation, its sign has been chofnged
from + to —, Ifwe imagine it put back, the sign must be changed
back from — to +. This i an important rule, viz, - \ When an
added or subiracied mumber 35 tajen, Jrom one side of ak equation, io
the other, ilg 8ign mmust be chamged. fs.

|\ . Fig.1
\“\ %Exgmrm —Ifg —~ 9= 6, find 2.
\ } thua:e minug 2 can he got rid of by adding Plus 2 to each side,
. TTE42=64 g
Le, =864 2,
le r=8

Putting 8 instead of o
2R 10 be corract ot e
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Here again we might have taken the —2 to the other side and
changed it to -+ 2.

3. ExaveLr iii.—Being told that three times a chosen number
was 6, we should at once conclude that the chosen number was 2.
To state this in algebraic form, let the chosen number be

represented by the symbol z; then
33”., = 6. N e
The value of z is obtained a once by taking a third of 6, \ N,
le. &£ = % ”;' D
-9 N

Actually, both sides of the equation have besn dlxiged by 3, for
3 — & It is common experience that thirds ¢f éqﬁal things are

3
equal. ,1\\~
_ The result can be verified by substituting”the value obtained
In the original equation, thus: PANY;
When  is 2, 3z does equal 6. D
Similarly, if 192 = =60,
60
e ‘¢' o 12 ’
ie. A\ Vx = —b.
Check, 103 =12 x —5 = —60.
Also, if R —~12z = ~66,
., — 66
A L= —iv
D ie. z = 5L
7 \W .
C’?;ec}{,gw: —12z = —12 % 5} = —66. .
Obseyse that the coefficient of T becomes a divisor on the other side
of the' equation, :

\\: 4. Examrre iv.—An equation may have the symbol for the
unknown number on both sides. -
In such cascs arrange the equation so that all such symbols arc
on the same side, Remember the rule given on p. 86.
Br - 13 = 3x + 5,
Be — 3¢ =5+ 13,
2r =18,

r =9
fogay 4

&N
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Check,

Left side: b — 13 =5 x § = 13 = 45 —~ 13 = 32,
Right mde: 3w+ 5=3 X9+ b=2T+ b= 3L

The sides are equal when 2 is 9.

Bxrrease VIII (a)

. Tind the value of the symhbol in the following equationsand
explain esch step. \%

1.6=x+2 9. % —3=6. 3.m~3~—;‘~»\6.
4 z+5=5 b x—5=-5 6 L85
T.44+x=29 8. 4—x=09, 9, .,ﬁ*'\i'——x,
10. 6z = ~18. 11. -6z = 18. 125086z = —18.
13. 32 = 10. M. -3z~10. J5M3z = —10.

16 ~Sr=~10. W dz=3 I8 —dz =]
19. ~dz= -4 20 4z =—§O° 2 6z +5 -~
22, 6 +18=0. 23, —5z — 8.2 12. 2. 2z — 3) = 4.

| %. z-3=4-{z~3). 6. ~TE>I=14. 27. 3z—11 = 4 — 2.

| 5. Examere v.—If %m“fj(i:}iﬂd z.

It is common knowledge that to whatever number half @ is

equal, x is equal to pwite that number,
In this case & =\12.

| pﬁiétﬁiﬂé’j. th Sides of the given equation have been multi-

| Thug @™ Ckx2-6x2,
! AN ie, r = 12.
. {G,énerally, the equality 1s not destroyed Hinlus dividing
! ‘{%‘tﬂ sides of an eguation by the same gum%yéfm TPy or 8
: N he operation. performed above is really the same as that of
1 % Exewple iii.
\r\\: v Thus: Ly = §;
&
Similarly, if ~3z = 18,
] =18 X —4,
ie. z=-30,
Check, .

N
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Notice that the 5, which is a divisor en the left, becomes a
multiplier on the right, and that the 3, which 15 a multiplier on
the left, becomes a divisor on fhe right.

6. Exasprs vi—The symbol need not necessarily be on the
left stde, thus;

I 18 = 3=,
then & B .’:\’
a 3 ...‘\ ")
ie. 6= O
7. Bxawrre vil N
15 _ (¢
E '\__':“_?‘3)
Muitipiy each =zide by 5= —31,
¥, or make  a multiplier xj%‘;
on the right. R
u; b=z

A
®w 3
15
’\M’.’ z=-b
Check, o B_ 15 _ g
PN\ T —~5
8. EXA;\{I’:NE'Viij.—SoIve the equation;
Muitighy) both sides Sz -5
by 280 get rid of the Mz —H+b=—g +6b
dessiinator 2. 6(x — 2) + 10 = (3z — 5) + 12,
\x ~~\‘Remmre the brackets. 6o — 2+ 1 =ax—5+ 12,
N/ Arrange the sides. bz — 3¢ = 12 — 10 — 5 + 12,
' 3z =9,
x =3
Check, .
Left mde: 82 —2) -5 =3(3 — 2) +h=3+5=
Right side: b Lo 3X378 . o o46=

2 3
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ExErcise VII_I (B)

Find the vahie of the symbol in the following equations. Check
each valye. :

O\
Liz=~2 2&-2 5 -gp-3 4 —3x ~ &2.’
boir=3% 6 ldp=p 7 —1iz = 8. -*3-53{ .=\j{4.
. g (N
L 2. -5, 12, = =8~
273 .z=2 1 = ZQ
JER-F 6 5.0p
13.§+3==-i,. It 5= =2, 15. 33.52‘)3'
T 2
5 3 5z 3 N 2.,
18, 3—2':‘-—‘5 17. —3‘-25. ,‘i‘@" $+1 7
I.x 2
19. 1+ 3 = 2@_:2( _£)=
NW-T8=23-3 o223 - 19 = 70— 19),
28.76 - 2) = 8z — )

25,

27.

3],§The foliowing i 4 uselul application of scirﬂp
R\ 1000 farthings ~ ggg farthings + 40
i.e. 1000 farthings ~ g 10d.

le equations:
fafﬁhingss .

Hence, 1 fa.rthjng = £.00]

+ 014, (dividing hy 1000).

The cost of
culated ag fo]

100 articles at
ows:

» 88y, 414, each ig readily eal-

Hd. =17 farthjngs =

Hence, the Tequired cogg
Similarly, find
emember thyt 5 Horin is £1)

= £17 +
the cost of 1)

£017 + 174, -

17d. = £1. 156, 5a.
0 articles at 9y 41d. each,
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32. Knowing that £:1.= a florin, £:05 = 1 shilling, and £:025 = 6d.

¥
express in decimal form:

(i) £3. 3s. 6., (i} £3. ITs. 63d,,

(i) £3. 7s. 64d,, {iv} £3. Ts. 84,
and quickly find the cost of 200 articles at these prices
each, N\

33. The time (T) at any longitude (L) may be calenlated fpdmy
the time at Greenwich by means of the simple equation: °

T-a 4 1{; where T fs the time roquired (in héusy),
G is the time at Greem{ifj{hﬂﬁﬂ hours},
L is the longitude {ndegrees},
When East, take $lic + sign.
When Wesﬁ,'\ﬁake the — sign.
Find the time ut : P \4
(i) 45° E. when it is 8 axd, 8t Greenwich.
(L) 45° W. when it ig g%fa.:’m. at Greenwich.
(iil) 75° W. when it3812 (noon) at Greenwich.
{iv) 75° B. whes(1% is 12 {noon}) at Greenwich.
{v) 80° E ¥ é it is 6 p.m. at Greenwich,

N/
N
L >

A\

7 CHAPTER IX
M[MJIfT}PLICATION AND DIVISION OF EXPRESSIONS,
AN SQUARE AND SQUARE ROOT

N\ 1. Maltiplication.

It should be clearly realized that {@ + b)(¢ + d) means that

ach term of (¢ + d) has to be multiplied by @ and also by b and
the products added.

Bxanrre i (@ + b)(e + d) = afe + d) + bic + )
=q¢ + qd + be + bd.
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The operation might have been set out as follows:

ct+d
a+h
Multiply by &, * dc + ad
Multiply by b, + be + bd

Add, ac+ad + he + bd

. Tor complex expresmons the latter arrangement is prcfef.ﬂ')ie,

but for simple expressions we shall adopt the former.

Exaewe il {a — b} — d} = afe — )—b(c—d]t
=q¢ — ad bc*l@.

‘Exampir iii, {a:? — 3y + 4yDa® — 23;9 - 292)

. x“.

z — 3zy + W 7

Xt~ 2uy — Zy”\‘
Multiply by 22, - iy dlary®
Multiply by — 2zy, 23?39 i Gry® — Syt
Multiply by — 22, N -2+ Gyt - Syt

Add, a&> bay + 8z — 2uyt — Byt
Notice that like tengm are placed in the same column,

\\

Exercise 1X {a)
Mnltaply bt the following produets, and check ults b
gmqg Auerical values to thg symhols s ’

AN+ be — d).

. 2. (@ — b)e + 4).
A\ (20 + 3b)3e + 2d). 4. (22 + 3b)(3¢ — 24).
;'\: s, (20 — 3b)(3e — 2d). 6. (3m? — Bu®){(2p® — 3¢°).
1. & - 2{z — 3). 8. {x + 2z + 3).
9 {z + 2z — 3). 10. (x — 2)x + 3).
(2 + y)(22 ~ 3y). 12. 23z — 2)(2x — 3).
g t(zém;&). . d'+ 14, e — )z + a).
. [+ ). 16. - -
17, (@ + )b — 4. ) Ig oy e

. (Bzy — B)bay + 3).
9. @%+ 32 — 1) — 2). 20, (2t — 3;(5?2)@2 - 2a + 1).
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2l. (2% + 3xy — 4%z — 2oy — Sy).

2. (xz +1+ %3)( — %)

B @+ b2+ 24 be—ac+ablfa—b+e)
Test your answer by putting b and ¢ each equal to a.
2. Multiply 2 + 3x — 422 + 223 by 2 — x + 22 — 325 ~
The following products, (1), {2) and (3), are very important, and ™
must he memorized. AN
) c+yz+y) =zl +y +yle+y) O
=R rrytayt+yE N

!
= a2 4+ 2oy + 2. AN 3
\
A NN
| T+ e \
'xt\\"
4 :
2] SEHey-
} I
PR % (1)
This is, of courde, the squaze of (z + ¥), and therefore we can
Write: o\

N @ty = at 2y + g
Fig. lsil[}’lh;ates the result.
N @~ gz - ) - 3@ —y) - Yz - y)

& = ~ay — ay +
~O =a? — 22y + Y,
\\‘” le. @—yp =2~ 20y t o

Notice that the expression obtained by squaring an expression
of two terms (called a binomial) contains:
The square of the first term.
Twice the product of the two terms.
The square of the sccond term.
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04 MULTIPLICATION

@ @E+ye -y =az -y +y@- y)
Ty oy - g
= z2 -_ y2‘

This result may be stated as follows;

.The product of the sum of and the difference between two,
terms is equal to the difference between the squares of the termns,

LN ’
e ¢ 23V S )
e

Fig2\ +

1
X

Fig, 2 iMustrates the relation’) With oblong A in position A the

are;z of thze figure = (2 + &~ 1), and in position - the area
= -— y . A

Identity, ,wg
An equation at\c&ﬁ\é;é':

O EEYR =gy 4y
which mere]f eXpresses the same quantity | i .
_ : 1 _ ¥ In two different forms,
18 called %;“Idenmy. Tt i3 true for 4 values of the

| Tonts sy¥mbois.
Cq:;t(aa this with an equation like ;p + 35 — 5, whicﬂ true for
pfjs\xgu]ar values of o only—in this case 2,
A Exurosg 1% (8)
\ Find:

\ o/
) 3

Lfa+be - pp (@ + b)a - p),
2 (2 + b, (9 - bR, (20 + by(2g — b).

% (@ + 2)(g ~ 28).
)2,2(2::: + 5)(2p ~ 5).

s §+1)=', (G -1)" (§+1)(§~1).
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6. (20 + 3y, (2 — P, 2 + Sy)ex — ).
7. (10 + 7), (B0 — 3)2, (B0 -+ 5)50 — 5), (50 + -03)2.
Bilat+b) el {lat+b)~cl{{a+b)+cila+b) - 6}
9. {2z — b) + 2¢3%, {(2a — b) — 212, :
{_( )F {%a — b) + 203 {(2a ~ b) — 20).
10. {6(2a + B)22, f(a + b}{a — B}~ _ £\
11, Choose several different values for  and Y, and verify that \
in every case )
@ +yP=2a*+ 22y + 42 O
2. Division. N

The arrangement for division of algebraic exprogsions is lilce
that used in Arithmetic. O
Exayprn—Divide 622 + 1lay — 1042 by 2 N0y
(i} For the first term of the ¢! ;.\
answer, divido 6z? by 2a. ’\ )
th(ﬁgl Multiply the whola ff 33;‘e2y (Quosient)
e divisor by 8z, place the i . o -
result  under the ltJJ{ividelld, 2z 59’)@*'13 “+1lzy —10y* (Dividend)
and snbtract. o\ 62+ 15ay

(i} For the nexs term, N — - 2
divide —dgy by 2. RN ’ 4@_}0};2

Continue as in (ii). N — ey — 1042

Repeat these operations nntil | : :

either thero is ne remaindor/op

i remainder in which tKediret

term is not divisibla by\ the
t term of the divigon,

Notice that $6-dividend and divisor have their symbols in the
same order, sy ‘ _

The resulimay be checked either by multiplying the quotient
and dju{ ¥ and comparing the product with the dividend, or by
gving wimerical values to the symbols, finding the values of the
divieer, dividend and quotient, and checking by Arithmetic,

O
\

Exrrerse IX (o)

1, Verify the correctness of the worked example in Division.
Divige-
B9 %b ot bihya+b. 3 42— 2b+ Wby b

4-f12——b2bya+b. . a—b2byva — 0.
(625) Eid
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6. a* + b2 bya+ b. o Tat+ B lbye— b

B g2~ Db+ b6byx~ 3 9. 40® — B + 8a by da.
10, —15zsy® — Baty? + 20ay by —bay.

11. 92* — 22 + 3z ~ by 22 — 3.

12, at — 160 by @ + 2B, 13,12 +a — Ba® -+ ¢®byd —
14, Bt — gty — oy + Uay® ~ 15y? by 8u? — Zay -+ Sy O
15, &4 + 64 by 2 — 4x + 8. L\
1.1 —a¢ — 32— byl — 3n + 2a% ~ o O
17. 6zt — 2% — 92% + 95 —~ B by 322 - 2z + L.

What is the remainder? Now find for whatyalut of Z

this remainder will equal 0. o\
18. Find ¢ such that 22 + 5 + ¢ is exactly divaible by = + %
:‘\\':

* 8. The Square of & Binomial. A\

(iven the first two terms of the sqﬂ;;ré of ‘s binomial to find
the third term. \ 7

Fxawrrn. :p“e:ﬁa;y

{i) Since 2 is the squ&ra,@f’.tﬁe first term of the binomial, the
first term is z. ~ T

() Since —6ay isbwlee the product of the two terms, the

R A :

produet is —-—Q:Ey Ji8. —~32y, and since one term is 7, the other 18
;3'.?2 i £ )

i1) The binomial is th - g :
a:i(—:)@;y s alis therefore (& — 3y) and the complete squart
(More briefly: To find the third term, divide the second tetm

by twice the square root of the firat term and square the resulb.
¢ “Thus:
) 8oy
-QE._ 3y,
(= 3ypP = oy?

The process is illustrated in fig, 3.

thiilg large rectangle represents z* -+ qz. Hal;ve the rectangle
b repriieiuts az, by a straight line which bisects @. Place
upper half of the rectangle in the position indicated by the
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arrow. It is then seen that a square of side 1a, and therefore
of area }a?, is required to complete the square, the side of which
s (z + fuj.

]
2

AT T T
. 1 i
f‘:Z"' 531: ‘+
' Zalidn
¢ ERE
1
|| - &,
N E e O
| . H K '.‘:
&
L F ) m\
P x [EZFEIANN
Fig. 3 N

2\

Exercise 1X {n) x\ '

Find the terms necessary to make each.bf the following expres-

slons the square of & binomial. Statehé binomial in each case.

L (i) a* + 2ab. (i) 02 2. (i) a... + 2.
2.(0) a® + day. (i) 22Ny (i) 2. + 4yt
3. (1) 2ab 4 B2, S Zab + B2, {iii) --2b + b2,
L0 4y — day. g da? + day. (iif) 422 + 4z.
5.1 92% ~ 12zy, SN@) 922 + 12xy. () 9° — 127
@t AN G)a—a (it) z? — -8z.
7. 49z¢ — 100249, 8. a%x? — 6ax.
% 6% + Gapby. 10. 924 — 6xfy.

WV 9 12
I_].. 16'0\‘?\\“*8(135. 12 52 _ @

,gifgfiuare Root.
\We have scen that: -
{a -+ b)? = a® + 2ab + b2
It follows that the square root of a? + 2ab - b¥isa + b.*

Le. Va® + 2ab T b% = d + b,

'h* We might take —a — b as the aquare root, but it is nsual to give only
B8 root beginning with the positive sign.
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Examining g3 + 9gp + %, we see that:

(i) The first term (z) of the square root is the square root of
the fizst term (a2) of the expression, _

(ii) The second term {b) of the square root is contaiped in the
remeining part of the expression, 2¢h + b2, which may be writtens
b(2a + b).

. . . N s
The process of finding square root, ig arranged as follows; (@

(i} The first term a, i5 the syuare O

ront of gt, . I Yy 22
(i} Subtract o2 from the expression. ._‘;T*%‘T—?f ‘
{iii} Form a new divisor by donbling., a)a \+ %

what i3 in the snswer (2}, and adding e

the result (b} of dividing this danbia NEaS B2

(2a) into the first term. (a) of £y 2 W) +2ab + s

Koo 9ab+5t, S .
(iv} Place the quotient (5) in ghe O .

angwer, multiply the new divisor by | AN

it, and complete the step a3 in divisjor, N

OENERAT, EXAMPLE.—-—FM v 9;}:“4.'— 275 — o i 1.

o N S — % — 1 Answer.
Fit o, N 0 T T 1]
9::4_2 3:::‘. BANY e 9:1:4
Becond divisor, 1 el
COT vmor_l_%8 \“ 63:2‘2:1:) '—12.1{:3'-2’324‘453"‘1
2X3®2 + _‘—xf!:‘} _' . - 12&3 -+ 4132
Third divisor, .\ r b2~ 4z 13 — 622+ 4z + 1
2(82 - 2 :Zﬁﬁw_fai i ' ,:_'_GM_I
The & method is used in Arithmetic,
ERIPLE i Fing 16364,
A\ B T, oy
NS 3 4 |2 Answer,
® T e
S )11 69 g4
H. T _i}_
84 Jogy
v H.T, 11 .—-2—.§§
682 ) 13 64
1364



THE RIGHT-ANGLED TRIANGLE

Notice that:

99

(i} For every two digits in the given number there is one digit
in the square roct {but see remark (i) in Example (ii) below). '

(i) The divisor 64 is really twice 3 hundreds + 4 tens; i.e. 640,
and the divisor 682, twice (3 hondreds + 4 tens) + 2 units.

{i} Mark tho digits off in pairs from
the decimal point. Notice that on the
extreme left 6 stands alone, but that on
the extreme right a nought is added to
coraplete the pair,

{it) Proceed as in Bxample i

(iii} On bringing down 28 and trying
1 in the answer, 521 is obtained for the
mumber to bo subtracted. As this is
greater than 228, place ¢ in the answer
and in #he divisor, and bring down the
nexh two digita.

26-0 4 Answer

2) 6 78:28 50
4

46)278 Y

276 (O
52047 228 50
203 16

10408)) 2034
\N

7

N

%

\ W

O\

A

The answer 26-04 is correct to the’séeond decirmal place, for
the third decimal figure will be found t0'be Jess than 5.

X
»

5. The Right-angled Triangle:

A knowledge of squarezoot iz necessary for the solution of

Problems referring to the sides of a right-angled triangle,

¢\J
A\
P\
:"\:s.
:s\\“ 5
:“\'7:; e &
4\ W/ . 1
\ 3 If ¢ is the hypotenuse of a right-angled triangle, and & and b
the remaining sides {fig. 4}, then
Ca = aﬂ - ba}
from which c=va + b

Le. the hypotenuse is equal to the square rool of the sum of the squares
of the remaining sides. (Theorem of Pythagoras, p. 77.)
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Y

\@t&%ermine to the third decimal place:
M2 ve 13 V3. 14 v

£l

100 THE RIGHT-ANGLED TRIANGLE
Fxanpis i—Ifa = 3 em. and b = 4 om., find ¢

c=vVErR= vEF+EF=¢v G+ 16 = +/25 = b om.
Again, sinee ¢ = g% + b, _
g2 = ¢ — b2 and B = — a?,

from which o= vE&~5 and b= v~ a%

Le. @ side, not the hypotenuse, is equal to the square 100t of the a:hﬁf}k

ence between the squares of the hypotenuse and of the fema:ii-'fuiga’g side,

ExaMpig i~If ¢ = 5om.and b = 4 em., find . )

a=VE—R=vVH-16=+/09-3 m’:a\:\g’
Bxaneeh fti—If ¢ = 5 in. and @ = 3 in., i b.
b= Vﬁf@=vga—gmv{&§4 in.

Empcfgﬁ IX (E)
Find the square roots of the following:

1. 4a* + 20ab + 250% 2. 4a? — 20ab + 25b%

3. 1622 ~ k. 25y2. 4. 36t — 1272 + 1.

5. at — 4a’+ 8d + 4. 6. 1 — 4y + 6y — 4y* + Y-
7@t — Qaiy i Baty? ~ day o+ 4t

8. 9a* 29207 + 10a% ~ 4g + 1. 9. 9801.
10. 16229,

11, 3080-25.

15. v8.  16. V1.
17, V8363, 18, VO(5858. 19. V315, 20. V158362,

21. Caleulate the bypotenuses of the right-sngled triangles of
which the sides are:

i) 5 em. and 12 em.’
(iii) 40 ¢m. and 9 cm.
(v) 33 ft. and 56 ft.

{vii) 24 in. and 36 m.

(i} 7 em. and 24 cm.

{iv} 13 in. and 84 ig.

{#1) 35 om. and 12 em.
(Answer to first decimal place.) _
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22. Find the remaining side of each of the following right-angled
trisngles,
{i} Hypotenuse, 13 cm.; one side, 5 em.

(it} . T3 cm.; 48 om,

{1} " 117 em.; w45 em.
fiv) o 29 in.; 5 21in.

(v) - 109 mn,; ps 9lin, i
(vi) . 8b ft.; w56 it !\
{vii) 342 em.; . 3 cm. O ’

{vii) . 303 1t.; . 1226t WQ

23. A ladder 40 ft. long is placed against a houseft’:o that its
upper end just reaches a spout 35 ft. abeve, the ground.
Tlow far is the foot of the ladder away fromvthe wall?

24. Caleulate to two places of decimals the Jength of the diagonal

7

of a square of side 8 om. R

25. The adjacent sides of an oblong mcasure 10 cm. and 15 om,
Find the length of its diagonals.

%. ¥ind, by the use of & rightanbled triangle, the radius of a
Pipe which has a sectiogi\equal to the sum of the sections of
two given circular pipes.

»&7  CHAPTER X

x'\n’
GEOMETRY: ADDITIONAL FUNDAMENTAL
P\ THEOREMS
A PROPOSITION IX

4 \ Y4
N/ Angles of Rectilineal Figures.

anglegm figure has n sides the sum of its angles is (n~2) straight
Consider 4 figure like that of fig. 1. By drawing straight lines
I One corner to each of the others, the figure is divided into

t;iangles w0 less in number than the number of sides. The anglos
of these triangles male up the angles of the figure, and as the
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angles of each friangle together equal one straight angle, the total
of the angles of all the triangles and therefore of the figure,

{n — 2) straight avgles

or, (n — 2) X 180 degrees.
Now in any rectilineal figure there
are as many angles as sides. If alld

the angles are equal then the, Bhze
of each is: \ \A

(n—2) %180 4

" e s S

Ezample~~The figure shown (fig. 1) has & sigleés,gé'nd tharefore
6 angles. 4

The sum of its angles = 6 — 2 = 4 straight angles
= 720°0

It all the angles were eqnal, eacl vﬁaﬁl& be

T0° Lo
- = 1,

Note—Figuzes h&viﬁg all the\.i}giﬂidcs equal and all their angles

equal ate called regular figutes. Tigurcs with many sides and
therefore many angles aresgalled polygons.

\\‘ Exerose X (A}

L. Celoulate the size of the angles of the regular rectilineal Ggures
with sides from 4 to 10 in number.

,\’ omplete the table below.

O BeeuLar Prave Ruoriirszar Fioures
A\ ox
I
Name of figure Ne. of Sum of angles, | Size of each \
in atfaight angle, ib

Sides | Angles angles l degrees \|
Square 4 4 2 .

i’lentagon 5 %0

exagon. 8 6 4 o

Heptagen 7 12¢
Octagon 2 |
Nonagonr 9 ]
Decagon 10 l

| .
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2, 1f a regnlar figure had a million sides, to what angle would
each of its angles be very nearly equal? To what known
figure would such a figure approximate?
PROPOSITION X

If two aneles of a triangle are equal, then the sides opposite these

anglqs are equal. SO\’
This ig the converse of Proposition V, p. 75. AN\
(Notice that what was given and what had fo be proved, irithe

miginal proposition, are interchanged lo form the cu::rm!er.se.’E~)‘~f’S

e s e

7
7

[ &

BN D C
\\ » Fig. 2
Given: AABO.mwith LACB=ZABC (fig. 2).
Prove: ABE A()
Procf: ,DgﬁAD be the bisector of the remaining ZBAC,
In £ABD and A ACD
Ay AD = AD
<\ - £BAD = £CAD
£LABD = ZACD.
S AABD = A ACD in all respecta . IV(®)
and °, AB = AC. Q.E.D.

* The student is warned that not all converses are true, though some are.

Al 1§ L H
right ga;?at:gfé];‘?le% are equal angles, but. it is not true that equal angles are a
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PROFPOSITION XI

If one side of a friangle is greater than another, the angle oppo-
site the greater side is greater than the angle opposite the less.

Given: AABD with AD > AB, &

- Prove: ZABD > /ADB, O\’

Proof: Consider first the isosceles AABC (fig. 3) havings\\ *
AC = AB and therefore + ABC — ZACB, \ 7

Imagine AC to increase in length by pt. ¢ movin@ih the dirce-
tion AC to, say, position D. Then ZABC gets Jarger and since
£BAC is unchanged, and the sum of the threégugles is always o
straight angle, / ACB must get smaller, \

The_refore n triangle ABD, which h@a:}}D > AB, the angle
opposite AD, namely, ZABD > the angle opposite AB, namely,
ZADB, PAY; QE.D.

Prove: AD > AR,
Proof: The only possibilitiey are

() AD = AB; Gy A7) . ARB; (iii) AD > AT,
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(1) If AD = AB, then £ADBD = LADB.
- But thiz is contrary to what is given,
.. AD cannot equal AB.

(i) ¥ AD < AB, then ZABD < £ ADB.
This also is contrary to what is given.
.. AD cannot be leas than AB. Q)

Hence AD = AB, this being the only remaining possibility. ()
Q.EDy =

Note—This form of proof is called ** Method of Exh%l}g{tiﬁh .

ExgroseE X (B) R 0

1. Roferring to fig. 3, give Teasons for cach stép)ef the following
sequence and draw the final conclustom,)

£ABD > £ABC = LACB 3 «CDE.

2. In the figure of Proposition XI, prove, that

ZABC = 2CDB +\/CBD.

3. Copy AABD of the figure of Frdposition XI on transparent
paper and fold it so thatoAB lies along AD. Tt follows ab
onige that ZABD > LADE, Why!

4, Proyc that in fig, 3 the"diﬁérence between £ ABD and £ADB

18 equal to twice.ACBD.
- Why is the hm@nﬁse the greatest side of a right-angled
friangle? .

- Prove that the-ghortest line from a point to & given straight

line is the’straight line at tight angles to it.

m

f=o)

N
The ParaHelogram.

D . ior.—A parallelogram is a four-sided figure with its
Obposite sides parallel,

"

P

) N PROPOSITION XIiI
A parallelogram has the following properties:
) Its opposite sides are equal.
(“) Is opposite angles are equal.
({if) A diagonal divides it into two congruent triangles.
ha({") In ares it is equal to the rectangle on the same base and -
Ving the same altitude. :
.
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All these can be proved from the faet that the opposite sides
are paralle].

Proof: InZ7ABCD (fig. 5) draw a diagonal, say DB.

C E

i
§
|
A

(8
Fig.5 A

Then AADB and ADBC have N\
DB = DB R
ZADB = ZDBC  (alt. angles of‘parallels AD and BO)
ZABD = /BDG, (a, angles ofparallels AB and DO)

. AADE = L\:DJ’E&C in all Tespects,

ie. AD < R, AB=DC, LBAD = /DB,
and the triangles are equal'in sreq,

*You ean easily prgm that £ADQ ~ £LABC,

Ii ABEF jq the gectangle of the same base and altitude, it is
readily proved thap A AFT) — ABEC, and that rect, ABEF -
LTABCD, 5 '

The area Qf bABOD 18 therefore AR x BE,
\“ le.  bage x altitude,

Exzrénsg,— Prove that the diagonajs of a parallelogram pisect
8 her,

&
&

PROPOSITION Xiv

An angle at the cenfre of g cirele ig
cumferance standing on the same arp,

Given: In figs, g, 7, ZAOB hag jig vertex O at the centre of
the ¢ircle ang stands on the are AB. s ACR stands on the same
are AB but hag 1ts vertex C op the cireumference, .

Prove: £AOB ig doubye ZAOB, o

Proof: Join 0o bya straight line apq Produice it go lé

tdouble any augle at the cir-
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Since AOC is an isosceles A with QA = OC,
£0AC = £LOCA,

and since ext. £AOD = 20AC + £OCA (opp. int. Zs),
£ AOD is donble 2 OCA,

m{\ﬁa

Sim:ilarly, ext. 2DOB is double £O0B.

/

v

By addition in fig. 6, and by subtraction in fig. 7,
£AOB is doulijerZ ACB. Q.ED.
Fig. 64 shows the case whereﬂié“éngle AOB is reflex, 1.¢. greater

than a straight angle; the prooffor fig. 6a is the same as for fig. 6.
R _

Fig. 8

N PROPOSITION XV

As a special cage of Proposition. XIV: .
Suppose AR is g dj ameter (fig. 8) and therefore Z AOB a straight
angle, then / ACH is a right angle. Therefore:
€ angle in a semicircle is a right angle. o
nfghls_tuseful fact should be remembered. Thales (640-546 B.C.)
wit, -
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Exgrerse X ()

1. Applying Proposition XV, construct a right-angled triangle
having its hypotenuse 2§ in. long and one of the other
sides 1% in, long, :

Show that the triangle may also be constructed by first »
of all laying down the side 1% in. long, )
Measure and write down the length of the remaining side,

2. In any right-angled trdngle, prove that the line frétn™tho

right angle to the mid-point of the hypot-enuse'ig}ecsjual to
half the hypotenuse. ' N\ 3

#%4

PROPOSITION XVI o

Angles in the same segment of a circle are eqlial to one another.
Referring to fig. 9, angles ACB, ADE andyAED are in the same

Segient, ACDER, of the circle whose oéufre is 0. They stand
on the same arc AR, . )

They are equal becayge each is haf the size of the angle at the
centre, namely, £ AOB, which stands on the same are.

A\ Q.E.D.
N B

,§ N/ Fig. o D

Fig. 16

7 &

N V' PROPOSITION XVII

»\3’“ The opposite angles of & quadrilateral fncen: iy irelo are
\ together equal to g straight agf;}l& ral inscribed in a cirele

(ﬁgchietﬁ: Quadrilaters] ABCD ‘fnseribed in & circle, centre O
Prove: (i) ZABQ + ZADO
(i) 2BAD + £LBCD

Proof: Join A and ¢ to the

=a stm-igﬁt angle,
= a straigh angle.
centre (),
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Then since
ZABC = half of £ AQC

and ' £LADC = half of reflex ~ AQC,

L ZABC 4+ ADC = half the sum of the two angles at O
= half of a cycle
= a gtraight angle.

Bince the four angles of the quadrilateral together equal two\
straight angles, it follows that the remaining pair, also, Imast
equal a stralght angle. Q. D B

(“

N

l

PROPORITION XVIIT M\‘
The straight line joining the middle point of & chard of & circle
fo the centre is at right angles to the chord. , \\«
Given: Circle, centre O, and chord AB, b\sected at C (fig. 11).
Prove: Straight line OC is at rlgthangles: to AB,
Proof: Join OA and OB, Q!

~
LW
%

\\' Fig. 11
The} since AOAC and AOBC have
~\ 2 OA = 0B
N AQ = (OB
OC = 00,
S AQAC = A OBCin all respects. . . . 1¥(c)
. £L00A = £200B, : :

And since ACB is a straight angle, ZOCA and LOCE are each
4 ﬂgh‘f angle. Q.E.D.
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Exurorse X (D)

1. Using the figure of Proposition XVIIT prove by IV(8) that if
~ OCis drawn at Tight angles to AB it bisects AR,
2. To find the centro of a circle, ' .
Draw two chords, not parallel. Bisect each by a straight
live at right angles, The point of intersection of these
bisectors is the centre, Test this yourself and use ey,
method o find the centre of g circle to pass through¢he
three points of a triangle, « N7

ool
7%,
) S

PROPOSITION X1 ¢

Tangent ang Secant to a Circle, ) .
_ A straight line just tonching a eirele (called™a Tawcewt) is at
right angles to the radius drawn to the poidf, of contact.

A secant is straight line cutting a géirele. Tt cuts the circum-
forence in two points, _ O\

.“\.‘.

\ . Fig. 12

O\
Lalling the points T and § (fig. 1], if ¢ o "
¢ anﬁm O an isogceles AQRT is(f(imec%’v;hiclﬁe{a?e Joined to

\ £OT8 ~ /o8
% 2708 = o, then /.oy - e (50 - .

2
Now imagine the gecant o he
clockwise, The Point 8 moveg mwpwoted o o b fumed

arda T, angd £LTO8 gets smaller
om0 gete lagor and nearer
Ter - When 8 reagheg grg coincides with F, » TOS

\
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closes, 1.e. = becomes 0°, and the angle between the radius QT
and the straight line through T, which now only touches the
ciccle, becomes 90°, i.e. a right angle,

This fact concerning a tangent is important and should be
remembered. Tt agrees with the statement in Exercise 6 (p. 108)
that the shortest line to a given straight line from a point outside {\
16, is the straight line at right angles to it. N .

(NN
O
Exrercse X () A
L. To draw a tangent fo a circle from (i) a point on/fhé circum-

ferenee; (ii) a point outside it. N

(1) This is easy, for it is only necessarinbo*draw a radins
to the point and then, ab the point, a,@a.ight Iine at right
angles to this radius. <

(i} To draw a tangent from a.’p?int outside the circle,
it Is easiest to make use of the f4ch that the angle in a semi-

- circle is a 1ight angle. - o\

If O is the centre of the\circle and P the point outside

{fig. 13), join PO and o8P0 describe a semicircle. If T

Fig. 18

~\J s the point ab which this semicircle cuts the given circlfe,
N/ the straight line joining PT is & tangent since ZPTO is
& right angle. )

Questions,—How many tangents to the given circle can
be drawn from P? How do their lengths compare?

% To a circle of 3 cm. radius draw tangents from a point 5 em.
from the centre. Caleulate their length.

5. How would you oxpect the tangents from a point to a sphere
to compare in length?
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4. Fig. 14 represents. the internal sections of two pipes of giver
dismeters,

Show that PQ represents the diameter of a pipe of which
the area of section is the difference betwoen those of

p

>

Fig. 14 y

W

the given pipes, and that the'agest of the ring between the

two eciccumferences is a(PTN
"

' PROPORITION XX

1 the cireumferonces of o circles tonch ong another, internally
or externally, the Ueﬂtis #ud the point of contact are in a straight
ling, (Two ciy said

cles a Sd to touck one another if they have the
same tangent atﬁpm‘nﬁ where they meet.)

One titcle,is Within the other, and P is the point of contach
7N s pownt o conts
(fig. 15), th’eg: the tangent PT at P is g tangent to both eircles.
¢/

AO T

¢ ftres of the circleg th dins OP and the
;igl?is JﬁPaMT Doth at right arigles ¢ PT, i, TR0 and 2 TPQ
game %tralgllllgt el?_E: hich ig only possible if PO and PQ are in the
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Further, if B is the centre of a circle external to the others but
touching them and the fangent at the same point P, then since
LTPR also is a right angle, O, Q, P and R are in a straight line.

Q.ED.

PROPOSITION XXI

The angle hetween a tangent to a circle and a chord drawn froma, .
the point of contact is equal to any angle in the segment on tkew’)
ofher side of the chord. QO

Given; In fig. 15, tang?g} PT, and chord TA from the point of
contact T. Diraw th\\dlémeter TOB and join BA, then ¢TBA
'3 a1 angle in the fegment on the other side of TA.

Prove: £ PRAZ: LTRA.
Proof: ﬁi@ﬁe”TAB is a semicircle, £TAB is & right angle.
NOTL ZTBA + £ATB = 4 right angle. '
]?'lltg.jsince TP is a tangent and OT a radius,
O 4PTB, ie. LPTA + /ATB =2 right angie.

Vo . ZPTA + LATB = ~/TBA + £LATE,
énd . ZPTA = ~TBA.
B_Y Proposition XVI,

£TBA = any other angle in segment ABT.
¥ Z g QE.D.

T E?(ERCISE-——ShDW that the angle between PT prodﬁced and
'8 equal to any angle in the segment on the other side of TA.
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CHAPTER XI

RATIO AND PROPORTION
1. Ratio.

A vulgar fraction, such as 8 is sometimes ca].}ed a ratio. 'Tr%i
fraction %, when Tegarded as a ratio, is often written in the fer
3:6 (read “ 3 1o 5 ") The first term, 3, is called the afitgpcdent
and the second, 5, the consequent,

ratlo represents the relgeine magnitude of quanbities of the
same kind, ¢

L
I two lines, ¢ and b, when measured by d‘;cale of inches

measure 3 in, and 5 ipn, respectively, then the‘ratio of the length
of & to that of p 15 g,

N ‘ :
This is a fixed relation between the ;ggxgtt\ﬁg of these two lines,

it then a will measure
8 units and b 10 unjts. The rati bf-these lengths is -, and this

the consequent, the ratio s
i 0 be of greater négualizy; when less, of less inequality.

en compari;u%z;a‘hos 1t will often be found convenient to
work out the QuoBent of the termsg i decimal form.,

/) Exgrerse X7 (a)
L. Express'the following
(10 81 16 4

tatios in their stmplest form:
N, o 10 3 . ) .
\\“12’ 2B 3 3 .15 125, 8:12, 3549,

2 8

lso in centimetres, and write down the ratios of their
lengths. Show ag clear]

i Y 38 you can that the ratios are
APProximately eqyg), :

; area of » %o that of the square
of half the sida? o1 % square o that o E

5. Whai_: is the ratip of the valye of

Shllling? Wi]] Four IESult.
also?

2 penny 4o the v&lue_of a
Tepresent the ratio of the weights
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8, What is the ratio of the value of a florin to the valuo of a
half-crown? .

If you have a balance and weights, see if the ratio of
their weights is the same as that of their values.

7. What is the tatio of the area of a circle to that of the square
on the radins, and aiso to that of the square on the
diameter !

8. & cirele is described ta touch the sides of a square. What')
is the ratio of one of the corner areas to the whole sqare?

8. Arrange the following ratios in order of magnitude: N

I

a3 Y Li]
& T Ty O gy TI+ ¢ ¢/
10. A bottle when filled with water weighs W. gﬁl: and when
filled with milk M gm. If the empty bot#leweighs B gm.,
what is the ratio of the weight of millstethe weight of an
equal velume of water? A

WX
AN

2. Proportion, \
Proportion 45 the equality of ratios. X
Draw two straight lines of léngth 3 in. and 6 in. respectively.
The ratio of their lengths is 2,"0r . Draw two other lines of length -
8and 16 in. Their ratio ig& vor again 1. Their ratios are therefore
tqual. We can write . ~
\\ v § _ E
6§16 '
Four numbery’so related are called proportionals.
lee first and’ last terms are called extremes, the second and
third (6 5nd(8) means. :
The foteth term (16) is called the foursh proporiional of 3, 6
and &\
Lproportion is sometimes written in the form 3:6: 8 : 16 or
JL0r¢ nsually 31 6 =< 8 : 16 (read 3 is o 6 as 8 is to 16). ‘
) Itany one of the four numbers is unknown, it can be readily
calenlated,
Suppose that we did not know the length of the first line, but
that we knew the lines 4o be proportional.
Let & = the unknown length.

Then x 8

[T
from which r=23.

*
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The four quantities need not be of the same kind. E.g. the
value of gold is proportional to its weight. That 18, the ratio of
two weights is.equal to the ratio of the corresponding valucs.

Thus, if 2 oz. are worth £15, then 6 oz. are worth £45.

| P 2 15

The Proportion is P .

Such a proportion is called a direet proportion because, ghe
ratios are direetly equal. Contrast this with the following ex-
ample of énverse proportion. Q.

It is & truism that the faster a train travels, the Aeis-time it
takes to cover a certain distance. AN 3

Suppose a train, A, goes at 40 miles an hour, né/ another, B,
& 30 miles an kour. Then to travel a partigdlar distance, say
240 miles, A takes 6 hr. and B takes 8 hr.

Now Speed of A _ 40 )~
’ Speed of B " 300\
d - Time of A 0g7
- Time of B,~'8

. A glance at the ratios shows-that they are not directly equal,
12 when both nwmerators refer'to A and botl, denominators fo B.
But if the second ratio be inverted, we have two equal ratios and
therefore a proportione : '

O\
8 eed,gﬂ:A__ %Q_?;_ Time of B
s&éﬁ ofB 307§~ Timoof A’

i.e. the ratio.,:?ffthe speeds is equal to the invorse ratio of the

times, %\
Thig 18,80 inverse Proportion.

NV
'3\\'Important Deductions in Proportion.

DEE S g b_d
A b d & ¢
1¥1de 1 by each Tatio; then il
. g
b 4
Le, inverting and multiplying, b_ @
a ¢
a ¢
2. If P then ad = e
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Multiply both sides by b (product of the denominators):
i3 c .
5 X bd = a < bd, 1l.e. ad = be.

In words, the product of the cxtremes js equal to the product

of the means. ~

Special case. If the means ure equal, the product of the ex-— LN
tremes i3 equal to the square of one of the means, E.g, it — rl—}‘,\’ '
then g == 2. b \b‘“

¢ is called the therd proportional to & und b, and b the geom@{rw
mean of 0 and . N
LUL_6 g e b R

;= d 1en e O
A2 [ T )
Bince & F= o wl = be. x:\\«

. LV
Divide both sides by ¢d; then ad \NbBt e _ b

— NN — = =

cd Led "¢ 4

No

_LHE:E th a- b sﬂ‘i"d
g 21 b = .

b N d,
Add 1 to cach side; then gﬁr 1=2+1,

from which .i"’é\*‘_f? _ctd

O =55

5.1f§:2,.~@w a;b*f?;d,
Subtrag\}f;ﬁ;m each side; then % —-1= :; -1,

fmﬂl@eh a}—b=c;d‘

)

¢ ~ e
~«ﬂIfa'“___ a—bh _¢—d
O Mi=jtn  S3-27
Divide lesult 5 by result 4; b cancels on one side, and 4 on
the other,

L a-b_c—d
“at+bh e+ d



£18 IM'PORTANT DEDUCTIONS IN PROPORTION
L c
Letg*k, then {—i—*k, .
and - kb=gq
and kd = ¢,
Adding Eb +d) ="a + ¢, PN
: 2 e A o
ok b+ 4 q\'\““
: .2 _a+te QO
’ b b d &N
By subtracting inatosd of adding, & O
a_ o —c \\'
b~ b =q \\
2 u+e¢ . a s-',‘}'
RARET R =t
EX_EB&CISE XI (5)
Find @ in the following p;z;ﬁortloﬂs;
"yt 2*‘%} ERNEEE Sk 7SN
T_ b e b oz a_a
5‘“:_. b o= = 7-1—:—. 8.—=—.
TN TET 5" a T

9. Examifie) the following ratios, and determine whether they
Q{Qﬂirectly OF Inversely equy};

":\,V (1) —~ &Dd 9 (11) Z and 3§
N
W\ .
\3‘; (]J.I) 2 311(1 gé‘. (_“,r) 10 d 28
AN )
\'“>“’ 10. The following ratio, 418 equal in pajrs.  Ping the missing
term,
5 u 1 gand =,
ey 4 12 ] 2
(i 3 and 36 {iv) gand
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1L Say whether the following are direct or inverse proportions:

(i) Circumference of a whee] A, is 10 #.
Number of turns in a fixed distance — 523,
Circumference of a wheel B, is 12 ft,
Number of turns in the same distance = 440,
{ii} Circumference of a wheel A, is 10 ft.
Distance covered in- a number of turns =

500 ft, ()
Circumference of & wheel B, is 19 ft. O
Distance covered in the same number of fhrns
= 600 ft. O3

*®

12. An experiment, showed that the weights of piecesof the same _
sheet of drawing paper were directly propdctidnal to the
areas of the surfaces. A portion having sheshape of the
map of Ireland weighed 3052 gm., and another piece in
the shape of 4 rectangle, the sides\gf which represented
2352 and 292-8 miles on the safie“scale as the map,
weighed 6-402 gm. Calculate the'eréa of Ireland.

13. The radius of a cireular arc is35 om. Tf the are subtends
an angle of 30° at the cent®ey caleulate its length,

14 Compare the area of a séctor, the angle of whieh s 60°, with
the area of the Who\fe'elrcle of which it is a part.
15. & sector has radius R and an angle z°. What fraction of
the area of the'whole circle is the ares of this sector !
Find theNo¥mula for the area, of the sector.

()
16. Teke ROIEt’ P within a eircle and through P draw a number
of shotds, and » diameter of the eircle,
o Measure the segments of the chords and form a table,

N U5
PN g
! ) | | ,
Segments on left of diameter Sepments on right of diameter

“-—-—-.________ M B
i éztlchord, (4 in. : 1.8 in.

* 0-6 in, 1-2 in..

Ete, _

E?iamine ratios of these numbers, and draw FOUT con-
¢lusiong,

{u 28y 3



O 22. A meta! hall weigha

o
\‘:

190°

17.

" 18,

19,

20.

21.

O\ displaced by the ball,

&

23.

PROPORTION

Inen eiperiment on the inclined plane, the following numbens
were obtained :

Weight raized Effort applied Length of plane upm.IH;“’,ﬁhf,?;hne l‘

278 gm, - 68 gm. 52 cm. 185 em,
278 gm. - 90 gm, 52 om, 17 eme
278 gm, 105 g, 52 cm, 20 el
28 gm. 140 gm, 52 cm. 26 { o,

. 278 gm, 161 pm. 532 em, ’3{},‘ ‘m. l

S

Bfiort “ﬁ@ghﬁ
e TS et atsed 2 emges Of Plane
State your conclusion n alngT&.{G: form. What effort

will be necessary to raise the wdight when the height of
the upper end of the plane i 24.6m. ?

Find the are between the ends(pf two radii of a circle, whieh
make an angle of 150° andiare 3 in, in length.

The 816 of a sector of atitcle of 5 in. radiug measures 5 il.;
palculate the angle batween its bounding radii. This angle
is double any angleBtanding on this arc, but with it vertex
anywhere on /fhe remaining part of the circumiarence
of the cirelesWhat is the angle in the latter case?

How many ainute Spaces does the large hand of a clock gain
on the'small haud in min.

A ba}ﬂ:of’:‘;()ppt_ar weighs A gm, in air and W gm. when totally
Atbierged iy water. What is the difference in weight?
& This difference i exactly equal to the weight of the Liquid

ZPress as a ratio, the weight of

the ball compared with the weight of an equal volume of
water,

Compare the ratios

b Agm in air, W gm. in water {totally
:}lnemerged) and T gm_ when totally submerged in turpen-

Express ag 4 ratio the wej i d
. : ght of turpentine compare
with the weight of an equal volume of Wgter.

..
Write down ag ALY new proportions ag ¥ou can from;:
3 5o
2y AR
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a—b c—d

a4 _c a+bh e+d

. Tf @ show that — , and that

i ¢ a €
23. The rims of two wheels revolve in contact without sliding on
each other. If the diameter of one wheel is 12 in. and of
the other 3 in., find how many fimes the smaller will turn
when the larger malkes one revolution, How do the revolu- ~
tiong depend upon the diameters?

2. Two wheels are geared together by means of a belt, If theré
ig no slipping, show that the number of revolutions made-by *
the whecls in the same time is inversely proportionalifo'the
diameters of the wheels. Y

27, A wheel having 12 teeth is geared to a wheel Wi@z;"?»ﬁ teeth.
What will be the ratio of their revolutions in'¢hs same time?

4. Similar Triangles. AN

Draw & straight line AB, say 3 in. longfand from the end A
draw another straight line AX, making anangle with AB (fig. 1).
I n‘:rlt(l’lng AX, with a pair of compagses’step off, say, b equal
& a. TR

Draw a straight line from tho point marked 5 to the end B,

O T e 8 A d
J Fig. 1
a.m‘]:f;?m the remaining marked points draw straight lines parallel
93B %0 cut AB. Mark the points of Intersection ¢, d, e, f.
“\Mow moasure the lengths Ac, cd, de, ef, fB.
hat 18 your conclusion?
Wl using compasses, compare the lengths of ¢, d2, €3, 4, B5.
Now look at the triangles AB5 and, say, Ad2.
bey have the same angle A; the angle at d is equal to the
ingie 8t B, and the angle at 2 is equal to the angle at 5. They
A%e the same shape.
28 13, however, bigger than the other, but there is a very
relation between their sides.



N
\‘:

:::ﬁOElEA. Find the length of DR and

N

122 . SIMILAR TRIANGLES
Firﬂ the following ratios:
side (AB) side (A5)  side (15)
side (Ad)’ side (A2)’ side (q2y
Your conclusion 18, that all these ratios are equal, ~
Such triangles are said to he gimilar,
Notice that the terms of each ratio are opposite equal anglak
Sides opposite equal angles are called corresponding sides.

In similar triangles the ratios of pairs of corresponding yides aze
equal, i.e, \

AB_ A5 B5

MT R (D
The triangles need not, of course, be onsjuside the other, but
way be quite apart, as shown in the figure. )
The point to remember 18, that they st be equisngular.

The ratios may be written S0 that the. terms of s ratio rofer to
the same triangle, P\ .

Thus: since i—g’r—“ig,
AB g
A5 T A3

equal angles, @

Observe that thg"gsiaes forming the termg of thege ratios contain
L\

(1) The'@deq AB, BC ang ACof a
t.nang'k\iA'BO (fig. 2) are 38, 30 and
4-7’@;‘1;. Yespectively.

dine DE is drawy parallel to the
from & poing 19 gy, AB, 2 em.
of AE,
Let DE = 4 and AR = o
, Bince triangles ADR and ABQ are ©
similar

L

R i quations 3 ang Y are readily caloulated.
Find them, gpq check your tesult hy measuremgnt-
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- () ABC is & right-angled triangle, the right angle being at G _
(fig. 3). To prove by proportion the relation between the sides,
namely, that a® 4+ J2 = ¢2,

Proof: Draw CD L $o0 AR,

Then since £CAD = £ BOD, )
and /ACD = /0BD, BRX N
snd the other angles ure right angles, therefore AACD, ACBDC
and AABC are all similar. P\

IIBU =z, then AD = (¢ — ). W

From AABC and ACBD ' N

BC _ BD 2

AR T B¢ N
. 0@, Ly ) .
ie. T from which ¢ cr. . WY e {i)

)

A “
:mg\ Fig. 8
From AABC and L{\C@
pN AC AD
PR Sl vl
. b 7N "_ .
Le, “\E—:s%? 5 :-E, from which % = 2 — ep, R i}

Adﬁi}%&laﬁonﬂ (i) and (ii), a2 + B2 = ¢=.
Thi&}&z f course, the theorem of Pythagoras.

.{'321;:13 and CD are chords of a circle intersecting at P. o show
~tliai) 0xPD=PA % PB,

N/ Sizce the triangles APC and DPB (fig. 4a) are similar {angles

2 the same segment and therefore equal are indicated by the
%8me number),

. PA_PD

" PC O PB
ad - PC x PD = P4 x PB,

V€. the producty of the parts of the chords are equal.



QO

e APPLICATIONS
It AB'is a dismeter and OD & chord at right angles to it (fg, 4),
then since PC = PP
PC? = PA x PB,

Le. the square of half the chord is equal to the product of the
parts of the diameter,

2\

‘S Fig. 4b

NN

) P1 is 2 tangent 1o a circle roth & point P (5g. 5) and PAB
any secant from P. To show that PT: = P4 x PB.

<
N

’\\k; Fig.
“.\ The triangles PAT anq PTB (ag. 5) are similay,

") since LTPA = ,7PR | same angle
and “PTA = /PBT . | | | ppop. XXI
and <o LPAT = £pTR,

. PA pp
' P T OPR
from which PT2 = pyg o PB

L&, the squarg of the tangent ia equal to the product of the distances
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from P to the points at which the secant cuts the circumference
of the circle.
An important case is when PAB passes through the centre
(shown dotted); then AB is a diameter.
{5) The areas of triangles of the same altitude are proportional
to their bases. A
Lot the altitude be @, and the bases res pectively, b and ¢. \
Denoting the areas of the triangles by A; and A,, we have, sirgqgv

A, = {ab, and Ay = }ae, N\
Ay i L W
..... | 1ap — & ol
i, gab/ﬁac o N

ie. the 1atio of the areas eguals the ratio of the basgé\. Y
(6) The bisector of an angle of a triangle divides the opposite

sifle in the ratio of the other sides. \\“
Given: AABC with ~ BAC bisected by AD'hg. 6).
' BD AB \V
Prove: oo = Ac \ N/
Proof: Since AADB and A ADCbave the ssme altitude,
AADBT BD
AADE — DO
A\ A

N/

\J B D C
O\ : Fiz. 6

Zgolé AADC over AD, then € falls on AB, say at (', since
”\m,ﬁc = LDAB. Now AADB and AADC’ have the same
N\ Altitude from D and their bases are AB and AC'.

. AADB AB AB . = BD _AB
. &ADC; == KO—, = E. e I)_C = E.
7 Q.ED.
(7) The medians of 4 triangle trisect each other.
of 5 é?admn i3 the straight line drawn from ap angle point
angle to the middle point of the opposite side. It divides



2 &

Z;_ By subt.racting AGDB from 4
1t can be shown that B is double GE,

Iéﬁ | APPLICATIONS

the triangle into two triangles having the same altitude and
equal bases and therefore equal in area,

Given: AABC (fig. 7).

Prove: The medians trisect.

) . o
Proof: Let ( be the point of intersection of any two mediafs
AD and BE. Join ¢,

p \:\’
Since AE = EC, R
AABE = AERO {eommon vgm:?x B)
AAGE = AEGC, (comqu:.( vertex G)

p%¢ 2
R W
»"\

and

O Fig. 7

By subtraction, ABgA - ABGO,
Again, since BD: ~\C,

\\ ~ AGDB = AGDC. (common vertex G)
N\ -+ ABGCis double AGDB

@7 . ABGA is double AGDE,

Sine,iﬁlteée Ag have the same altitude from B, the base AG
ts donkle the bage GD;

'\\“':' ie.

and

AD is trisected at G

ADB and AGDC from A ADC,
-+ AD and BE trigeet each other ay .

imilarly, it cap be shown that the megdign from C trisects AD
at the same sgme point @, Q.E.D.
Notes,
You wily notice that @ ig &b one-third of the length of cach
nedian Weasured from {he middle Point of the opposite side.
€ point @G ig the centre of grog (sometimes called the centre
of gravity) of A ABg. e
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Exsrose XI (o)

1. In fig. 2 show that %—g} = %g

2, Draw any triangle, and from any point on one side draw &
straight line parallel to the base to intersect the remaining
side. Letter the figure. and write down all the pairs of -
equal ratios you can find. Verify your statements by care-
ful measurements. :

N

. : oA\
3. Draw two straight lines « and y, 1-8 in. and 3 cm. longfe™"

spectively. Taking the unit to be a straight line an'inth

. long, find lines to represent N
{0 xy. {ii) g (i) o (iv) =% ' ”[Tz)\yz.

Measure the lines in inches, and check the xdsults.
4. Using the lines in Bx. 3 for & and g, findya.line representing

- 3y Nt
7 _ N ~x\
5. Taldng an inch as the unit, find gtraight ines to represent
_ iy ... 08
(i} 23 x 08, (g5 i) 5

Check by meagnrement,
6. When the shadow of s&ertical stick 6 ft. long meagures 8 ft.,
that of a building-pséasures 75 ft. Find the height of the
building, ™ } :
Thaley (603)&.0.] used this method to find the height of
the Pyramgddof Egypt.
7. 1f, in fig, 26,CAB is 5 in, and AP 1 in., calculate PC.
8 If, in fighdh, PC is 6 om. and AP 4 em., find AB.
% In iZ 5. ot AB be a diameter. From T draw the chord at
{N¢at angles to AB, and lct it intersect AB at Q. Show that
N PA x QB = AQ x PB.
-~ 10\ The sides of a triangle are, respectively, 10, 14, and 18 em.
\\ ) Fingi how the hisector of each of the angles divides the
Opposite side.
1L Verify by accurate construction of fig. 7 (p. 126) that CG pre-
duced biscots the side AB.
1204 pay, diameter 6 em., rests inside a conical wine-glass of
¢pth 8 cm, and rim diameter 12 em. How far is the lowest
POt of the ball above the bottom of the glasst

(o28) e

Q
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CHAPTER XII

BPECIAT RATIOS, TRIGONOMETRY

, { \\~
i [ i ight-; triangle ‘arelof
» The ratios of the sides of a right angled o Jo
spgcml fm}r)irtance in a branch of Mathematics, cal%ed. Trigo

mefry.# . N
nODraw? a right-angled triangle ABC, having thﬁ; angle A say
40° (fig. 1), KN

o\ s
® :~:"F1-}. 1
The side AB is caliéd the hypotennse, and regarding the re-
Maining sides fy

om sthe angls A, BU is the opposite side and AC
the adjacent sid, "\

The zatio, %ﬁ is called the sine of tho angle from
which the ,ﬁni:.:m’ngle is regarded,
. BC a
E.g.\x@:ej& (usually Written sind) = AR O g
'ratio, a—}m, is called the cosine of the angle,

N

2 &

N\, b
N R cosine A (briefly written cogd) = AC
e 4

B
io. “PPotite side Te.
The ratio, ﬁ?a??mﬁ » 18 called the tangent of the ang
BC ¢
E.g. tangent A (briefly vritten tanA} = AQ OT 3
You will notice that the gideg are |
angle to which they are Opposite, but in

* The originator of the Babject, iz saig to b

e Hipparchus (160 5.c.).

£\
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Exerorge XIT (a)

1. Measuring the sides of the triangle constructed, find sin 40°,
co3 40° and tan 40°,

Z. The remaining acute angle is 50°. Regarding the sides from
this angle, find sin 50°, cos 50° and $an 50°.

. What conclusion do you draw concerning the ratios of an
angle and the ratios of its complement? ,

4 Construct appropriate right-angled triangles, take measusés
ments, and find the trigonometrical ratios of 30°, 45°% 662,
80°, and 107 N

< If one of the rcmaining angles of a right-angled Ariangle is
very nearly 90°, why is the sine of that anglewery neariy 1,
and the cosine very nearly 07 Similarly éxplain why the
sine of & very smali angle js nearly 0 and fhe posine nearly 1.

Remember that the terms sine, cosine &nd tangent merely

denote ratios, and may be regarded as glgebraic numbers.

The ratios for angles up to 90° will belfound at the end and in
the book of tables referred to in Chapter XVII, 18,

(=L

a2

% Simple Applications of the Trighomeirical Ratios.
ABC is a right-angled triangld)with 2BAC = 35°, ZACB = 90°
and AC () 25 emn. {fig. 2}.<Find the remaining sides.

8
e a
7.3
7\
\J A 2-5 gr1s. [
R \’\\ Fig. 2
a, ey
L B and5, g = htan36° = 25 x 7002 ~ 175 em.
\‘3 0935“2-Iz . __ b _2'EL_ 5
B o’ ..C—m—m—92*3€}dcm.

Exgrose XTI (B)

Eh.ld the remaining sides of the following right-angled {riangles,
€lng the right angle: _
LAS30° a =300 9 B—50° g~ 32 cm

a
WA
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3. A=230° ¢=3in 4 B =50° ¢ = 32 on.

8. A=85° b ={in, 6 A=40° ¢ = 25in,

7. Find the area of each of the above triangles.

8. If, in fig. 1, BQ represents a vertical object and AC a hori-
zontal line, / A is ealled the angle of elevation of the tog
of the ohject. When AC and £A are known, B¢ can be
calculated. ¢\

The elevation of the top of & tower at a point\300 1t
from its foot is 40°. Calenlate the height of the to¥er.

9. If the sun-shadow cast by a vertical pole 6 £, high is 8 ft.,
caloulate the altitude of the gun, (&

10. The angle that BA makes with the hoMzontal through B
{fig. 1) is called the angle of depressiont. From the pro-

perty of parallels, the angle of depression of BA is equal
to the angle of elevation o AB. { &

From the top of a eliff 560C7). high, the angles of de-
Pression of two boats af sea Arg observedd o be 45° and 50°
i peetively; the line jointg the boats points directly to
the foot of the olift, Fhﬂgi ‘the distance between the hoats.

3. The Length of any Parallel of Latitude,

We shall assnme e\eirth to be a gph,
phere.
Let 2POW = @gnb}ngle of latitude (L) of any place P (fg. 3)
A\

N\

Fig. g

PQi : . . .
o t& xzatlzlel .radms of the ling of latltude of P, and OP the radius

Then 2QPO= 4t , poyy L.
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Hence, regarding A PQO from ~AQPO,
gg = cos L; .
Lo PQ=0F. cosL = Reos L.

Now, since the line of latitude of P is the circumference of the A
cirele of which PQ} is the radius, we have: \
Length of parallel of latitude = 27 x PQ O\
= 27R cosL. £\ e
The portion of this line of latitnde lying between two lines'of
longitude, one degrec apart, is 2——~—ﬂI§ cgﬂt since the, eoxiplete
cyele is 360°, 60 (¥
At the %Euator, L =0° and since cos(Q° = I,"‘hw Jormula
besomes 2T \
. OMEs 0 p \\“
Examrim—Taking the earth to be, a- Sphere of 4000 “miles
tadius, find the length of the line of lagitude 51° N. between any
two ines of longitude one degree apart:
From the tables, cos 51° = ¢6293.
Required answer = 27‘:—">¢:40§{?0X 6293 _ 4394 miles.
It will be readily undéistood that the portion of & line of
longitude lying between two lines of latitude one degree apart
8 the same for all kﬁéﬁ@des and latitudes, and is equal to

TR 608 miles x.)
3607 180 = 9-8 miles {(approx.).
N
o\
:"\".
N

Fig. 4

t'4' The_, following relation bctween the gides and angles of a
“iﬂgle 18 Important, and very uscful.
® ABC (fig. 4) be the triangle considered.
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Crenmscribe @ circle about the friangle ABO, O being the

centre.
Join OB, OC and biseet £BOC by OD.
Then mince - ZBOC = 2A

ZBOD = A.
Also since AQDD = AODC in all respects, Z0DD is n sight {

angle and BD = %— Oy
_ N\
Kow sin A = %/R = '2%- N
, K X &
SR @y \
Similarly, =1
e b ._SE_
" smA smB\sinC’
and each fraction = 2R. ,:.’:;
Since e g b B

t ey 24~ &me
the ratio of any twoSides is equal to the ratio of the sines of the
opposite angles * \

5. Appliestion.

_ ‘Whentwo angles and one side of & triangle are given, the rematl
ing parte’can be caleulated.

Exahrre.{—To flnd the position of an inaccessible object %,

j\hgiollomng measurements were made at & base line AB {fig- 5

o AB =190 vd., £BAC = 35°, ZABC ~ 60°.
(Y The engle ACB = 180° ~ (35° + 60%) = 84°.

4 * In the above we have as i :
¢ asgumed that sll the angles are acute, and P
fiz%tmxfagf"e not yoi defined the sine of an obiuse angle. Later we give the
#in{180° — A) = sin A,
(Sea Chap, XXTIT, p, 271.} )7 o

It can then be zasily pra s e g if
one angle is obtuge, ¥ praved that the relations just given are true eveR

% Metl?od used hy Thales (800 5.0.) to find the distance of a ship from the
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To find AC and BC, we have: c
@  sindp® SN
—g .._.; - A
¢ sindp° 5. \a
* a=e ?111353 58 a0’y
v sin8p° A c B
os1I0 _ Fws
6-996¢ Y A\
69-1 yd. -
sin B

b . : l’::'
From ¢ fon - = —— in likes
m the relation L b can be found in hlfg.\g}alﬁler.
A\

= 120 x

I

6. Circular Measure of Angles.

The curved length of the arc between twoypadii of a cirele is
proportional to the angle between them. Ifli&also proportional
o the_length of the radius. This relation\Betivcen are, radius and
angle is olften of great use in the measurément of angles.

. The unit angle in circular measnre.j&the angle for which the arc
s equal in length (measnred along the curve) to the radius (fig. 6).
It is called the Rapiaw. N

!
S N

Fig. &

O\ )
F?l ?gh‘&ngle of 2 radiang the arc is twice the length of the radius,
a].ld\?o on. Thus the relation is:

P\ . :
\/ Are = radians ¥ radius,
' . arc
or Radians = ——.
radius
It

em evident that the number of radians in a straight angle is

insgmfe as the number of times the length of the radius is con-

namel n thc_ length of the arc of a semicircle of that radius,
£ ¥ T, Whlch is approximate]y 3%‘
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This enables us to caloulate approximately the sizc of the
radian in degrees.

. 180° o
3% radiang = 180°, -, | radian = ° i 5T&° approx.

You will no doubt understand why it is less than the angle of \
an equilateral triangle,

Construct a radian ag acourately as you can by laying gol&'ng‘th
of thread or thin wire equal to the radius along the are of & ircle.
Measure the angle by protractor. \

N
7Ny
S %

Exavprps. -

(@) Convert 105° into radians and find the ledgth of are sub-
tended at a radins of 12 ip, ¢

. 105 105 x 1380
Radians = % = _._G‘T.\_g 15, |
Are = radians x radins — 1312 in, = 92 in,

(i) Find the angle subtended by a circular arc of 25 om. at a
rading of 10 exp, o

21, or 21 x BT&° = 1432°

'i"',\EXERCISE XTI ()
L. Convert the ibh‘owing angles into radians:
20°, B0045°, 60°, 80e, 130, 200°, 270°, 310°, 360°,
2. Exprqss ‘the following radians In degrees:
AOT 02,1, 04, 314 g 628, 27, 7.
‘%&d t.}:ge arcs limitegd by the angles in Exercises 1 and 2 at a
. '.; radius of {(2) b cm. 3 (8) 10 in,

PN Draw & cirele of tadius 1 in. By drawing radii divide it into
& 81X equal sectorg, Calenlate “the length of each of the six
\/ a10s.

7. Areu of 4 Beetor of Circle,
A circle can be divideq into g
Ing radii whick divige the
Into the same humber
drawn gt §—6— =

number of equal sectors by draw-
angle at the centre (i.e. a cycle or 360°).
of equa parts. For example, six radii,

80°, divide the circle into six equal sectors.
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The circumfercnes is divided into equal ares also.

The area of a sector is the sume fraction of the.circle that its
angle is of & eycle (360° or 2x radians) and that its are 18 of the
whole eireumference.

H R is the radius and n° the angle of the secfor, the area is

7
agg Of #B?. If the angle is measured in radians and is A radians,

A ' N
then the area is 5 of wR?, whick equals JAR2 N
It a is the arc of the sector (fig. 7), the fraction it is of the ciréum-
. A\
forence is T O

a w'\"\"
", area of gector = 5. ¢ »B* = §aR)

The last two resulfs agrce, since & = AR, x.\\J
It will be seen that 1nR is the same ag fhe formula for the area
of a triangle if ¢ is regardod as the baséwdnd R as the altitude.

”
xo

)

.\le 7 Fig.8

’\\w
8, Curved Surface of a Cone.
.fi'if'thf: curved surface of a cone conld be peeled off and laid out
”\}aag 8 indicated in fig. 8, it would have the shape of a sector of
/& cirele, the radius being equal to the slant height (8) of the cone
%d the arc to the circurnference (27R) of the basé of the cone.
27RS

The area of this sector 1= —5 = «RS.

£ H is the altitude of the cone, S = vHE + B%
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‘? What s the diameter

" 8. (i) The dizections of an

136 EXERCISES

Exzroge XIT (D)

e

- Tf the arc of a gector of & circle is 16” and jts radius 12", what
is its area?

- What is the angle of the sector of Ex. 1 and by how much
does the direction of the are change from one end of it'h
the other? KQ

- The length of 4 cireular curve of railway is 300 vdoand fhe
change of dircetion 16°, Caleulate the radius of\ the curve,

- The angle of a sector is 160° and its arc 20 om. ;. fndlts radins
and areg. 4

==

.

&

&

- A figure is hounded by oo concentric argd bF length 19 and
8 em., and the parts of two radii, eael part 4 em. long,
Find the grea of the fignre, and thedength of the full. radius.

- ¥ind the ares of the cwrved surfacglofa cone 4 in. high and

[=r]

radius of hase 3 ip,

Exmcrsﬁ XTI ()

1. Complete the workingbft’he example under fig. 5, and find
also the perpendieqlyy distance from (! to the bage line.

Employing relationl 2 _ b _ ¢
Pioying re ?r'lm.nﬂ 8inB  gind’

Bk 100°," 30°% b=gim

! of the éircum~circle of each of the
triangles of Fxercises 9 ¢, 62

; .18 ohject make angles of 60° and 50°
With the directiong of & base line 1000 yd. long, when
Viewed from the gng 0

f the b ine. TFind the position

of the object, ¢ base line. Find the p
(i) If the object is & poramiq the elovation of the top of
which iz 1] _When sighted from the end of the base line ab
which the directioy is 60°, find jtg height, and its elevation

if sighted from the othier end pf the base line,
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9. Bhow that the arca of a triangle is
be . ab . ae
'Q{: sinA or 5 sinC or o sin B,

10. Calenlate the areas of the triangles in Exercises 2 to 6.

11. Assuming the carth to be a sphere of 8000 miles diameter,

what 15 the circumference of the circle of latitude 52°%
The earth malkes one revolution in 24 hr. (approzimately); |
what is the speed at Jatitude 52° in miles per hr? ()
12. Explain, with a diagram, how you would find the heightof a
tree, if you have a set-square whose angles are 305’.:@1’1(‘1 60°,
13. A tower, 30 ft. high, is surmounted by a velitii;/a:l flagstafi.
At & point P 40 yd. from, and in the horizéntal plane
through the foot of the tower, the flagstafiand the tower
subtend equal angles; what is the length of the flagstaff?
14, A right-angled triangular field has Df@ side 150 yd. long,
the angle opposite it being 58°a Hind the hypotenuse.
15. Bouth America has roughly the ghape of two triangles with
4 common base, as shown infig. 9.
From the data given, caleulate the approximate arca of
the country. &N

ol
3

. ) - ., %*’
] &
“ '-l "5\ ™ ;
\%}')’é{\ ;ON.I.@,t.
'~~.; s . Equater
AN 5 S.Laf,
9.\ SQ0UTH
O~ AMERICA
O\
.\’: 3
,
@
B 55 Lat.
Fig. 8

16. Refor t your atlas and you will see that India also has the
shape of two triangles placed as in fig. 9. In this case



138 EXERCISE XII (E)

the base iz on the 25° N. latitude line, the ends being

respectively at 67° and 93° E. longitude, and the northern

and southern vertices respectively at 34° and 8° N, latitude,
Determine the approximate area of the country.

17. ¥ind the distance between New York (41° N., 74° W.) and

Madrid (41° N., 33° W.), meazured along the line of latitude,

18, A ship sailing from Portsmouth (50§° N., 1° W.) to New ,

York (41° N., 74° W.} sails along the meridian until @\./)

little south of latitude 50° N. is reached, and then &ils
west unti] its longitude is 44° W., after which if\sails
south until its latitude is 41° N., when it regtmes its
westerly course for the remainder of the voyage. Calcu-
late the approximate length of the vayage.. N\
19. Fig. 10 represents two pulleys connected by<a\baut belt.
The diameters of the pulleys are 3 ft;'and 2 ft. respec-
tively, and their centres are 5 ft. apast. Find by trigo-
nometry: )
{i} The angle TOQ. (iii) The reflex angle TOT,.
(i) The length of TR. %) The angle RQR,.
(v) The lengthiof the belt.

T

o Fig. 10

S\ ) Check your result by drawing and measurement.

\/ If the larger pulley makes 100 revs. per minute, find:
{1) The speed of the other pulley.
(i1) The speed of the belt in feet per second.

20. A disc of diameter 6 in. i3 hung against a wall by a string
which passes over a nail 5 in. ahove the centre of the disc,
and round a part of the rim of the dise.

Blketch the arrangement, and neglecting the thickness
of the nail, caleulate the length of the string.

a
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REvISION BEXERCISE 1

L. Bimplify:
) 12-7+(—8)—4—{~3). |
i) 2% —3+(5) — 4= - 2-3(B—4)—(~3}%
{iii) Bla-iB)— Ba+b)+ 4+ by—{u b
tiv) Bafe— b1+ 2(x+y) v Safe—B) Uz L y) - defa ML

9. (i) Subtract 12 from —8. (i) Fram — 7 subtract 13
* fiil) Subtract 2% — 8z~ 8 from —Ga” e 4. '
{iv) From —3{2a— 6B} take - Tlee— 36, (
3, Calculate the position of the polut midway belween the puints nit?«l}{i
at distances 3+2 and — 11 in. respectively from neeo. A ?
247
4. Find the value of: \$

fi) (3x+ 2yhe — {2z~ 3y), when wx—Soay -2 e 1 auht 1.
- fRE dae \
(i} bi‘;ﬂz‘k}f’ whena -4, b= -5, ¢ 1, and th{ via 20 h 2,
g e d ’..x\ w
b, A ¥ite hias the shape of an equilateral trianzlgsith a somicirele onoone
gide. T ¢ is the length of the side of the trigngle, find (i) the perioneter,
{ii] the arca of one face of the kite.

L R
,..’.,

b. It y= 3671 2-35 {x — 38), find the diﬁcrc;};’&; between the values of ¥ when
=52 and =12, L\

7. Bhow that (a+b+c)=a2+ b2 2282 9ab - Mo+ 2ea. From this il ity
write down the square of (@ % — 3y).

B. For what value of = (]GKS’\-“;S:fz equal (i) 7, {ii} 47 Can \ Wove the
P 4

value 81 \
0. Solve DO+ 3% + 15(x+ 57 = M )
iy 372 +8) Be-1 . 2z 3
O R L S
M i€y -
oy, L M-N
N\%x,s uw that 2 NN

11. Th;' perimeter of o 60° i
PR & 60°, 30° right-angled triangle is 30 in.: Bl the
£ length of each side, and the area of the triangle. ;

m~\J
12w . BN 22~ cox 2
\ Find (i} —-—é-——f, when & - 307, and when x - 457,
sin DA

.. 2
(i) =g, when D=18° and 4 - 60°.
gin -ﬁ_
‘13
_3: _DT&W-& Perpendicalar t

v that ¢=g oo o7, the side opposite the angle € of = ABC, and

. p A L .
+beos A Find similar eyualions for o spd &
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4. On each half of the diameter of a semicirels describe 2 semicircle, Show
that the outer arc is equal to the sum of the two inner srcs. Repeat
the construction with each of these two semicircles. The cuter aro
is equal o the sum of the four arcs now obtained.

If the process is cohtinued, what line is nltimately reached and what
obviously wrong conclusion seems to follow ¢ (A paradox! = paradoz!
& most ingenious paradox!)

Can you explain the fallacy?

CHAPTER XIII
GRAPHS * AN

1. Graphs of Simple Expressions. \

Previous' work (p. 56) suggests that, m\\ Tepresenting values
graphically, not only should positive galites be shown, but nega-
tive values also, o\

| O

[
|_’.

tIlIf,lin fig. 13, Chapter v, 21, the horizontal ling be extended to
e left, and messnrernents made below the horizontal line,

ne%atlve values of @ and of 4 can be represented.
Y’OlYl'e Esqa}l method is to draw two straight lines X’0X and
at right angles, as in fig. 1. These lines are callod axes,

* The yi
Formas (1001-1gg3).” 7 "% T Frenchmen Descontes (1506-1650) azd
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and their intersection, the origin. Values of @ are measured along,
or parallel to, the horizontal axis, and values of 4a along, or
parallel to, the vertical axis. B.g. when a is —2, 4a s —8.

These values are represented as follows:

Move from the origin 0 to —2, on the left, and then move
downwsxds and parallel to 0Y’, through a distance of —8, as
shown by the scale on the vertical axis. Call the final position P.
Then P indicates the two values —2 and —8. The distances
0Q and QP are called the co-ordinates of P, 0Q being nameda
the abscissa (plural, abscissae) and QP the ordinate. In statifi)
co-ordinates it is usual to give the abscissa first; thus thé go-
ordinates of ' are —2, —8. N

You must not conclude that ordinates are always negiif'ifue when
the corresponding abscissae are negative. O

Tt is common practice to use Z as the sywhol. Our object
now is to examine the changes in the value of/ydrious expressions
containing  when the value of 2 is changeth -

Take the simple expression 2%, and ‘tabulate, as below, its
value when  is given the varions values shown.

Tl e e af® a= [o[1]2 ]3] 5

Value of =

. T A T T
Yalue of 2 —8-i —61-—\4]-_2“ =2a= H Q 1 a1 4 ‘ 6|81 10

+8 )

Examining thege hunmbers, it is seen that:

(1) The valuog ‘ofxt increase by equal amounts, viz. 1.

{ii) The valugs’of 2x increase by equal amounts, viz. 2.

It is c]gé}"t-hat when equal changes are made in the value
of 2, tle_torresponding changes in 27 also are equal, but not
neceséanily equal to the changes in 2.

4 \'Tlms; when 2 changes from 2 %o 3, an increase of 1,
N 9z changes from 4 to 6, an increase of 2,
./ 8nd when 2 changes from —4 to —3, an increase of 1,
22 changes from —8 to — 6, an increase of 2.
In this case the change in the exprossion is twice that in .
It is observed also that: :
(i) When z is -+, 2z is +.
(ii) Whenxis —, 2¢ 15 —.
(iiiy When 218 0, 22 is 0.
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Now plot the valnes, a5 n fig. 2, and join the points by straight
lines. What do you find?

It is not diffieult to prove that all the points are in one straight
line.

The Graph of 2z is thus s straight line.
Produce the graph in hoth directions. Take values of 2 form,
. which you have not caleulated the values of Zig, say v =}, —§
—5, ete,, and from the graph read off the corresponding YQI}L_QS
of 2z. Oheck these valpes by actnal caleulation, and yoh, Wl

find that the graph gives correct results. >
A O
I—'“—'“—*::r H- A0
ERENENNRES AN Y EE A
= .._7_ . 4
_.,___._____.\H._ - o
4 | ____.._Q_.__-_. { 1 3 —_—-\ i
T ARE ;*J. ]
:::i::::‘g_'::::::f“:; I
e A et
T AT T
AR P
= 4 LT T_l. N B [
RENSEEEESvanky ——%; ANNnN
FO. -5l Ny Y 1T ey
S A e e R T
S T e
SEcaser et ians henasinies
SO B e EuRREn AR
oy B T
o0 R

R }pbserve further that:

NY (i) The graph could have heen drawn if two pb:ints only had
“\“hbeen plotted.

\ (if) The graph passes through the origin (0, 0).

(i#i) Regarded from the origin towards the right, the graph
8 an up gradient, :

(v} The ratio of the length of any ordinate to its horizonfal
distance from the point at which the graph cuts the axis of &
PQ  MN
Bg ¢ 4N
& or = owr

!
&
.-
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(v) The ratios referred to in (iv) are each equal to the ratio
g—%, where NR is parallel to the axis of &, i.e. to the ratio
Difference between any two ordinates
Difference between the two corresponding abscissae

The ratios named in (iv}) and (v) are very important, for thej
meagure the gradient of the graph. _ N

You have probably recognized these ratios as the tangent of the)
N\S *

angle the graph makes with the axis of 1., (
l P : (":’g
Thus: O% = tan £Q0P, o\
\*
In thiz cage g_% - ?g = 2, hence tan ZQOP =
The graph heing a straight line, its gra&l\ént is, of course,
constant throughout its length. 2\ N

P

2. It is now proposed to determine-upon what the gradient
depends, N
- Examine in the same manncr.the following expressions, namely,
3z, 4z and 4z. Draw the graph of each expression on the same
axes 8 those used for the graph of 2z (fig. 3).

Compare the graphs, aQtl observe that:

{t) All pass throu&ﬁ.,ﬁhe origin,

(i) All have np gradients. : :

(iif) The greatér the coefficient of x, the greater is the gradient.
It is evident #)4# since the exprossions differ only in coefficients,
the gradient depends upon the coefficient, and may be said to be
equal t046% From a table of tangents, find the angle the graph
makes®tll the axiz of  in each case. Verify by measnrement.™

ﬂé,\&r plot the graph of —2#, and contrast it with that of +2x

L. (fig 3). :
U "1t will be at once observed that the graph of —2 has a down
gradient, and you have doubtless concluded that this change n
the kind of gradient is due to the change in sign of the coefficient.

4 posttive coefficient of x gives an wp gradient to the right; « nega-
tive coefficient @ down gradient lo the right.

* The scales of both axes must be the same, otherwise the messured
angle will not agres with that given in the fable of tangants.
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3. In order to examine the effect upon the graph, of adding
to, or subtracting from 2z & constant nuwmber, say 3, plot the
graphy of 2z + 3 and 2z — 3, and confrast them with the graph
of 2z (fig. 4). It will be observed that:

{) All the graphs have the same gradient.

(i) The graph of 2z + 3 cufs the vertical axis at a distance 3

shove the origin. _
(i1} The graph of 2& — 3 cuts the vertical axis at a distance §"
below the origin, N\

Similarly, examine the graphs of —2x - 3 and ~3z —3 by

Consider now the point at which, say, the graph of 2% 3 cuts
the axis of . ¢

At this point the value of the expression is 9, a"ﬁ;I‘ the corre-
sponding value of @ is seen to be 1} This valud of z may be
obtained by solving the very simple equation\J

22— 3=0. o\

We have, then, a means of determinjﬁé the point of intersection

of the graph with the axis of . o0

SN

4, Summary, A\
(i) The graph of an expeession of the type ax + b, in which
dand b are copstant numbers, is a straight line.
(i} The gradient,of &l graph depends upon the coefficient of
&, and is “up 7 if 1h eoefficient is positive, © down ' if negative.
{ii) The positighyof the graph with respect to the origin de-
pends upon thaladded constant. If positive, the graph cuts the
vertical axiy €8sve the origin; if negative, below the origin.

It s nsngt'to call the value of the expression y, and the axis
upen }‘Qich 1t is shown, the axis of ¥.
?]1’% tquation y=arth
m\i&\naﬂed a linear equation, for its graph is a straight line.
\ Obse}‘Ve that it contains the first power only of z.
Y s said to be @ linecar function of x.
Rotice that when & value is given to , the value of y becomes
definite, _
The varions formg that the graph of ¥y = ax + b may take are
shown in fig. 5,

A
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1. Without drawing the gudphs, compare the gradients of the
graphs of the following expressions, and state where each
graph will cut the akes of y and z:
@ 3 &N @) -xz+4  GH) g -7 _
2. Write downxt."[{éﬁquatians of graphs which have the following
propextie :
(1), Gradient -+ 3, intersects the axis of y ab 7 below the
drigtn. .
\ w{% A down gradient of 3, intersects the axis of y ab d
;{f:kbqv_e the origin, .
\\ (iif) An up gradient of b, intersects the axis of y ab 3
\ below the origin,
{iv) Gradient -2, intessects the axis of & at +b.
{v) Gradient 23, passes through the origin,
3. A graph is paralle] to the axis of 2 and intersects the axis of
Y at +5. What is its equation?
4. Write down the equation to each of the graphs in fig. B.
5. Compare the graphs of the following expressions:
: 3 -5 3%+2 and 2% - 5.
6. What changes are made in

doubled? a graph when the expression 18
otbled?
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7. Plot the graph of the equation = 2y + 3. :
What change occurs when the coefficient of ¥ is reduced
wutil it becomes 0%
8, Write down the cquation to the graph obtained in Exercise V (7),
No. 2, and also to those in figs. @ and 11, Chapter V.

5. Intersection of Graphs.

Since & point on the graph of an expression gives the value of,
the expression for that parficular value of z, it follows that, at the )
point: of intersection of two graphs, the expressions which they -

represent must have the same value. \
- A
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" - y
£ i
F 11 < . R I
N ] \
R s .
[T I L
N/ Fig. 6

Moreover 8¢ 2 co-ordinate of the point of intersection must be
the valug€ of 'z for which the expressions have the same vilue,
hat fyngre equal.
D’i‘a;“* the graphs of 9% + 5 and —3z + 25 on the same axes, and
Fenky this (fig, 6).
“\>The value of 2 for which two expressions are equal may. be
viound quickly by equating the expressions and solving the equa-
6on. Thus, ‘taking the above expressions:
%+ 5 = ~3z + 5,
2r + 3z = 25 — §,
T =4
For this value of z, 2z4+5=13
and ~3z + 95 = 13.
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6. Interpolation and Exfrapolation.

When the value of a function of, say, = is determined for &
value of i between values for which the values of the function
ste alteady known, the process is called Interpolation.

On the other hand, when the value of @ is not between valnes {
of 1 for which the values of the function are known, the progess
ia calted Extrapolation. Values determined by interpolation enby

"N\

extrapolation are not necessarily correct. .
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fFOI EXa.nl:lple, the graph given in fig. 7 shows the femperature
2‘1 & quantity of water when heated by eleetrical means far the
nf;’ showa. Rea;dmgﬁ were faken every b min. for 20 min.
the graph is produced, the temperature indicated by it
:::iei_pﬁndmg to a period of 25 win. is 116° C. Bu# this is ineot-
aho%veoifh?; E‘i't'er boils at 100° ¢, and the temperature does not 1158

The correctness of & résult obtained by extzapolation or inter-
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polation depends upen whether the function is eontinuons through-
out values witich include those of the point under consideration.

Note—In drawivg o graph 4t 4s not necessary to adopt always the
sewie seale on both azes or to wumber the pownt of infersection of
the awes, G, 0,

Exercose XIIT () .

{. Why must the expressions of graphs which intersect havd,
unequal coefficients of g ? N\

. Write down the expressions of two graphs which will ot
intersect, _ RS

. State whether the graphs of ~2z + 5 and 2 — & ¥l inter-
seet, and if go, find the co-ordinates of thepoint of inter-
section. \

Find graphically the values of z for‘vﬁ[}s\c?c‘h the following

fanctions have the same value. Check by caleulation.

422+ % and 4z — 3. 5. %2 and 3z — 1.

§. 4~ 3z and 2z + 8). T04E — 18 and ~(3z + 10).

8. Draw & graph showing the cosp'ofarticles to 1000 at 3d. each.

Show the effect of a redlietion at the rate of 2/6 per 100
after the first 100. N\

- Bolve by & graphic method the following question:

A and B are appioaching each other on the same road, A
walking at 5 iles an hour and B cycling at 9 miles an
hour. If BMg at the second milestone when A is at the
twent-iet-h_\”tct which milestone will they be nearest when
they mee? .

10. SOlve,lQ’;.} graphic method the following problem:
\{LGF clist A Is riding on a road out of 2 certain town at a
e of 8 miles per hour. A second cyolist B rides out on
~3Mbe same road at a rate of 10 miles an hour. It B
X  Passes the first milestone ten minutes later than A, which

X

/ will be the milestone nearest to them when B overtakes 4.2
1. Ons dlock, 4, gaing and another, B, loses uniformly. At
noon on Monday, A is 30 min. slow and B 50 min. fast.
At noon on the following Friday; 4 is 10 min. fast, and B
10 miv, slow. Represent days on the axis of & and minutes
fast and. slow on the axis of 3, and find geaphically (i) the
day and actual time at which the clocks indicated the
8ame time, (ii) what that indicated timc was.

[ =]

[

=]

A
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" 16. Calcalate the distance between the points~"’:~\
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Write down the equations to the graphs, and check yom
results by Algebra.

12. Plot the points £ =1, % = 6 and & = ~4 y = —5. Join
them by a straight line, and determine ifs equation.

13. Write down the equation to the straight line which cufs the
axis of & ab a distance 4 and the axis of i b & distanse —6,
from the origin.

14. Determine the equation to the straight line which passes
through the points £ =1, y = 1 and = = =3, Y5 J

15. What is the equation to the straight line at right drgles to
that of the last question, and passing, &hitpugh the
origin e

2=%y=5 and x=6Y\0

17. Plot the point & = —% = 6 and the/ peint y = ~3z = 9, and
find the equation to the strgightMine joining them.

18. Tty = 32 + B, find the changes'in y when & changes from
1+t0 2, frem —2 to +2, apd-irom 3 to ©.

19. Iy = 8 — 3, find the 14676 of the change in ¥ to the change
in ¢ for each of the following changes in z, viz.: (i} 1t0%
{ii) = to —3; (s to —2; (iv) 2 bo 2001; (v) your own
choies; writed0wn your conclusiona.

7. Applicatipngl )

Being able towwrite down he equation to a given straight-line

graph, yon 8P now in a position to uederstand its use in Selence
and Mathématios.

Exapreie i—The following numbers were obfained whep B

gzménhﬂit and a Centigrade thermometer were used to determine
.

Yarious times, the temperature of & quantity of water which

o\ s being heated. The thermometers were read sipiultanecnsly.
4 ~\' ¢

lOenﬁigrade ]15\20125 30 40160‘80 100

‘Fahrenheit \5; \ salw 8 | 104 | 140 F*}s— 202

Represent the Centigrade readings on the axiz of @ and the

Fahrenheit on the axis of g, and plot points which have as £0
ordinates these simultancons values {fig. 8).

The points lie almost on a straight line. (Any deviation m&]
De due to careless reading or imperfections of the thermometess.
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Draw the straight line which passes evenly batween the points,
dnd find its equation.

The interprctation is that Centigrade readings are converted
info Fakrenliets by multiplying by 1.8 or 2 and adding 32,

B |
| 2
_"’.:3 . R \
< g0 // R\
Y 4 O
E // N
0] 2 _jeo AN 2
1\ (S P\ N
o BN
=20 =10 O 10 20 30 40 50 g0, N\
Centigrade X ;‘\
Fiz. 8 N

Exaurie #i.—The following numb;;r:sfshow the volume of &
mass of gas when heated to differenf temperaturcs, the pressure
being constant: ™Y

—_— v:.’*
Temperatuze (°C.) | 15 _[“\3s J 35 ! 0 | 6 }
—_ 5 B
Volume in c.c. j a0 | 15525 | 1605 | 163 J 173 ' :
“—‘—'———'—‘—'—\\ [ |
N | |
180-—._1_._'.:._~ [ :
e il /_|/J/
x&\\n'_- ¥ :
¢ |
hwwa:\______ it
SO
L asweol— | TJ_ . |
N —1| L1
‘3 N _"‘_‘_‘—“‘—'E’—'“‘——“
17| N I// .
] | i), 20 80 |_a0 50 60
| _[ Femyl °0 | |
1aok ] r ‘ _

Fig. 9

Find the equation, and from it determine the temperature at

Whigh(the volume of the gas would he zero (fig. 9). -
¢ 23)
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The equation found being y = 0-5%z + 142,
we have T 0= 0b2x + 148,
from which = — 2783,

i.e. 273-3 degrees below 0° O,

Exawpig fii.—The table gives the total heat in a pornd o
steam at different temperatures:

Tempembure("(l)( 80 ‘ 100 | 10 | 120 | 130 | 50

N
_ —r'\—T A

‘Total heat unita ( 63l J 637 | 640 ‘ 643 ‘ 54&‘{’«:652 ]
: | N

Find the law connecting total heat and t-empera)ﬁﬁ:c.
You will find it inconvenient to make theNintetsection of the

axés 0 for either axis (tig. 10}. Y
660 LAy :
ZN\ ]
$i} 1
TR =
weso— | A
i SN
Sl B
Yoo IS S N
2 | |
3 [ 1
SegofCR |
o S R RN
\680 ‘_‘ )
¢S w0 00 20 40 Tigo
O Temp”0,
o Fig. 10

oY
Th\\ssadded constant can be found as follows:

«The gradient will be found to be (-3 (approx.),
7 *Let b represent the constant; then

) Y=03%+ b

Take two known values of and g, and solve the equation
for b, Thus:

N

637 = (0:3 x 100) + b,
from which b = 607.
Hence the relation is ¥ =031 -+ 807,
The accepted relation ig ¥ = 03082 + 606-5.
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Exercizse XII1 (¢)
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1. The foree to raise & roller up an inclined plane, the height of

which was varied, was fmmd to be as follows:

‘ Height {em.) ; U ‘ ]U "(l | 50 |
| e
1 Foreo (gn) | 8 | 16| 24 1 32 i \ .
| | Oy
Find the law comlf'(,hng hewht (Lnd force. O

2 A body moves with a uniform velocity of 5

5 ft. per qeco,ﬂ&

Draw a graph showing the distance covered in,warious

intervals of time.

“,\‘

This graph is called the graph of positioday,

Observe that the gradient is equal to

velocity.
3 Using & set of pulieys,

ths value of the

N

the force re¢ uu;}d to lift different

weights was found to be as stat@d belcm

‘ Weight (b) | 0 |

s

’71‘01‘00 lb)

ooy

1
52 1

|1.,, 3 | 41.5-51: 12-8‘

Pind the equatloﬂ\connechnw weight and force.

4. The following were
into water: O\

“_'_‘_‘——-—-_———._—-._u,_ I, G —— -
P_G_P_ﬂl(i’" pq“l | 2 ‘ 518 |0
—l—

30 15 30 37130 50

‘SQ% rcadmgs of a barometer when lowered

{15’20\30 30 |

367 |31 O"|3I -46i 3] b3| 32 2

Beading (i }Jﬁo 0130-07

; \Find the relation hetween the reading and the depth.
"‘The foHOng temperatures were

\‘:

% quantity of water was heated by
Powar,
Find the equation connecting the

time of beating,

taken every minute when

a flame of constant

temperature and the

Tirse (min,} | 0

Tenporatype {°C.) i 15

7

3()!591

|
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6. The latent heat of steam af different temperatures is given
in the following table, Find the law,

il Temperature (°C.) | 100 | 120 140 | 180 | 180 | 200 '

: _ ! - — -
| Latens heat 537 | 523 | 509 4958 | 451 | 468 A
_ __‘\L_——-—-_____._______

7. The table below gives the resistance of g length of pla,tieiﬁm
wire when its temperature i varicd. Kstablish the gquation
conneeting resistance and temperature, A >

ool

T
—_—

Y.
[Temp.(*’c.) 151200 40 | 60 | 80 | 100%20 150

" o,

Resistane V
?zf_m;‘"e 105211060 | 1188 | 120.7 | 197.6 ’134‘5[|141-3 154-7

W

8. In an experiment to determine fhe ‘coeflicient of expansion

of benzene, the following nftbers were obtained;

Temperaturs (°C.) | oj 20, J| 0 | g 80
Volume 10 | Mgu J 10500 | 10776 | 11070

. Plot these‘ mlhnbem, and find the equation counceting
them, LA -

8. Graph of :Ihversa Proportion.

Ve ’03 J ] ) 1“_‘———'—-| | T | !
’“\}~ ey =g , 3| == 0 5 [ 1 [ 213 4 | &
\ ] < !

1 1J

L _te 1 L
9:[0 é345!

* Any number divided by 0 is equal to infinity: " is Inroe
enough to Teprosent the rosuls, Eﬁnjt.y is d?nft;dnﬁyﬁ'éff ;}fﬁ?f . ¢
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On plotting the points, you find that there are two digiinet -
graphs or brunches; ome in the first guedrant, and the other
i the third (fig. 11).

Ezamine the graphs, and verify that they possess the following
characteristics:

{i} Taking any two ordinates, and the corresponding abscissae,
the ratio of the ordinates is equal to the inverse ratio of the

N
s e
T AP\ SHEEwSS
B i |a 2 -3
- \ h]
H SRl AN
g S S | 2 - $ \
= &
_ b - ’\\
] T x
1] P~ 1 |y=l2
) 94 | -3 ) Jo | 4 NN T
-'_'_-'-_-'-_---"‘"“z.. {a’: ML 2 8 tEE
T o i e B
) LS B
IR ‘ATE:" —
LTSRN
T —t— | Q\ -2
NRREN 1
ARG &
LT 1T i
) \ Fig. 11

\cbl'fi’-Sponding abscissae. (This is why the graph is called the
aph of Tnverse Proportion.) 3
(EJ) Ed'xch curve has a bend, or elbow, opposite the origin.
appre hn each side of the etbows, the curves get straighter and
sa; thzc the axes, but never actually meet them. It is nsual te
. % the graphs cut the axes at infinity. ]
exb;;;mplete graph, composed of the two branches, is called a



156 APPLICATIONS

9. Plot now the graphs of the equations:
. 2 . 2, 2 .
(3)9':55- {u)y=:}}+d. (mjy:E-‘ 3.

Comparing each of these graphs with those .of ;:, it is seen thags

the effect of the 2 has been to move the graphs away fromathe
axes (fig. 11), of the - 3 to raise the graphs and of the —3 tollbwee
the graphs. Graphs (ii} approach the straight line y =5 and
those of (ifi) y = —3, \

.
< 3

o '\"(.’
10. Applications,

Ti, when simultaneous values of two quantibies are plotted, the
graph appears to be like those on Pp- 185, .\thc}truth of the assump-
* -

tion that the law is y = g . <an be verified as follows:
Ity = %, then, if 7 is written fm;;l {the reciprocal of ), Y = az
Hence, if 4 and 7 are plo,ti;e;i, the graph is a straight line of
gradient g, N
. a .
If the law isy = z T then, substituting as before, ¥ - az+b,

the graph of which(33 ‘again & straight line of gradient @, but
which cuts the aEsof ¥ at b,

Referrincrw%he raph of 4 — 2 3 nlot d ,1 d verif
the sbovosfatoment, 0~z * % Doty and , and vy

N
T\ 3 ]
O ~4‘-3 —2 -—1‘:;\:: 0ol 1] 2 4‘1
N 1] 1] 1 i T____—fl__l
~ 11733 —1‘=.-;=‘“’° Yosy
2] 9 o 1| =p= | » 54 |5

You find that the graphs for positive and negative values of Z

* Another way of expressing this relation is ay =a,
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form & coutinuons straight-line graph which cuts the axis of  at
3, and has a gradient of 2 (fig. 12).

The cquation is, therefore, § = 2 E) +3, le.y=_+3

T 1
5 sl
| N\
N . N >
LT A
r ¥ ¢\
-L | o +3 N\
1 i - [5) L 1 15, N\
1
Fig. 12 47 ’
-\

Exercise XIIT (D)

w\,/
Construct graphs fo show the following: O _
1. The number of rails of different length¢ tquired for a mile of

rallway. »
3. The number of revolutions ma@e by wheels of different
diameters in covering a fixgdidistance.

3. The speed of a moving body-and the time it takes to pass over
a fized distance.

L, The following numb@i-‘s}were obtained in an experiment for
ascertaining hh‘\k\’t’he volume of a gas changes when the
Pressure is yagied:

o -. I
Ke &2 10\15220‘25|30 45
| o] A

O X’-’.‘45|30i22‘13‘15 10

,,\ff‘ Find the relation between pressure and volume.
“\3./The table shows tho distance from a fulcrum at which a given

\/ weight must be placed to give a certain leverage.
Woight (Ib.) | 10 | 20! 40 |50
| |
Distance (in.) |‘| 50 | 25 | 12:5 | 10

Yind the relation between weight and distance.
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6. A graph of the form g—’- b passes through the points ¢ = 8

Yy=3andz = -1y~ —1 Ty its exact equation, and
the straight lines which it approachos,

CHAPTER XIV ™
SIMULTANEOUS SIMPLE EQUATIONS, EMERAL
EQUATIONS, PROBLEMS (D

1. Simwlaneons Simple Eyunationg.

We have seen on P- 147 that it js quﬁble for two otherwise
different exprossions o have equal yaltey while the value of the
OWD number ia the same in bgth,) )
When the “Xpressions form park.bf equations, the cquations
are called simultaneoyg equatiofsy

Taking the expressions 3z ' and %z + 5; if we call the value
of each expresgion ¥, ;

We balt write the example in equational
form, thus: N\
L ¥ = 8x — 4:’
AN\ DA
) W =2z+ 5
X\
or, tra:usposmg ’m\rms, thns:
Q" 5 -y =,
@\ B —py o R
:t\"’ Yy 5,
or@)ﬁlght bave differeng multiples of the equations, thus:
s."?\ 9$ - 3!_! = 12,
"\' “"4»33+2y=10’

:\‘; " whers the firgt quation hag beey maultiplied by 3 and the second
by ~2. 0 given such 5 pair of equations, the object is to
fivd the valyes of 2 and y for which eack equation holds good.

. values of & and i which, when sub-
stituted for these symbols, mako the ex pressions on the left eqoal
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Mermop I, This has been already indicated on p. 147.
Find the value of either x or ¢ in each equation, and equate
the results. '

Qe —3y=12, . . . . . . {)
—de+2y=10. . ., . . . (i)

From (i}, =3y = —Y9r + 12, ' N

—9z + 12 N
Sl b ¢\
€N
le. =3z —4. vy ()
From {if}, 2y = 4z + 10, "‘ )

Yy=2+0. . . . apne o (@7

Since each is equal to y, O
| So3e— 4 =2+ 5,0

2= 2O
] lril‘iy now be found from either equa,tiip}i'fiii) or (iv).
" y =2z +8 |
= 2339 + 5.
?<23.

_Check this result b{i}};h)sﬁtuting these values in equations
{1} and (ii), L\

Metrop II. Fesm one equation obtain the value of one of the
0Wns, say M, in terms of the other, and substitute this value

i the other/dgitation, thus obtaining an equation with only one
nnkng LNY

St} ymm—o o )
:,@mtuting n (if), -4z + 23z —4) =10,
"'\..: -4z + 6 — 8 = 10,
\ 2z = 18,
=9
From (53j), y=3x9—4=23

Mutop TIT. Tn this method the eﬁlua,t-ions are multipiied by
8uch numbers as will make the coefficients of one of the unknowns
Mmetically the same. Then, if the signs of these coefficients

laoeg) o
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6. A graph of the form % + b passes through the poinfs z =3,

y=3andx=~—11% = ~1. Fad its exact equation, and
the straight lines which it approaches.

CHAPTER XIV Oy

{ |

. . e\

SIMULTANEOUS SIMPLE EQUATIONS, LITHRAL

EQUATIONS, PROBLEMS .\ O
A
1. Simmitaneous Simple Equations. \¥;

‘We have seen on p. 147 that it is possible for two otherwise
different expressions to have equal va{i@@ whilo the value of the
unknown nuraber is the same in both\ )

When the expressions form paghy6f equations, the cquations
are called simultaneous equationg..”

Taking the expressions 3z ~Mband 2z -+ 5; if we call the value

of ¢ach expression ¥, weean write the exaruplo in equationsl
form, thus: O

O oy=sz—4

Oy =2+ 5 3
or, transpnsipg\b}rms, thua:

oy -4,
Kot -y =5
&{W,E‘inight have different multiples of the equations, thus:
O\ '
o\ 9 — 3y = 12,
~O° —4x + 2y = 10,
NV where the first equation has been multiplied by 3 and the second

by —2. When given such a pair of equations, the objest 18 %
find the values of x and y for which each equation holds good-
In other words, to find the values of  and y which, when sub
stituted for these symbols, make the expressir‘mg on the left equal
to 12 and 10 respoctively,

There are several methods of solving these problems.
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are alike, by subtracting, or, if unlike, by adding, this nnknown
disappears, and an equation is obtained which contains one
unknown only.

9 — 3y = 12, S T 14

ety =100 .. G

To get rid of y, multiply equation (1) by 2 (the coefficiont of YO

in equation (if)), and equation (1) by 3 (the coefficient of g

N

i)):

Then we have Loy
182 ~ 6y — 24, L N
—12+ 6y =30, . . . A ()
Adding, . 8¢ = 54; '.j.> ’
=9, A\
) . . ’\\‘;
Y 13 obtained from either equation (i) or (i 1{ \
x:\ 4
Further Examples, L&
S 3
Exampre i, §+ 4y = 439,

6 + oy o3y,
sidIeI; g;c}irb;osc'lear the ﬁ“rsig E}i&é,;ion of fractions, maltiply both
Then A 19y ~ g,
\'\Vﬁx + By = 27.

These can 0¥ be solved by ane of the methods given,

 {
e\ 2.5 .
Emrpge‘g; —+ o i
»\:{' x y ¥ (J
\J 3 2
N » o =11
x{\ r oy 1L )

~ ) Tn such a case it 5 betber to find the value of 1.
\ ©

\/ Multiply equation (i) by 3 gng equation (ji) b;’ 2.

Then 6 15__
$+§~—-2],
6 ¢
% §=22.
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Subtracting, . = == — 1;

and y = —1id

Substituting in (1), _ —

Bl Bl gl Bl

Verify by substituting these v ﬂues .m equations (i} and {ii).

A modlﬁcafmou of this methq& s “that of writing a for :}5 and
b for L =, and then finding a an&b from which x and ¥ are quickly
found by inverting the v{l’aes found.

Exsurir i W exl t’here are three unknowns, three different
equations are reqmre From these, unknowns can be climinated

watil only one remains, Thus:
P\

9, sa — 264 ¢ =1, J O £}

7\ L

& 20 —3%—e¢=—-6,., . . . . . (i)

\“' m+5h+3e=20. . . . . . . (ii})
“Eﬁdd\m and (i), and ¢ is Sa— 2+ e= 1
,\ _ 2 — 3b— ¢= —§

2% 5q — Bb = =5 (iv)
wbenPY ) by 8 and | 94— b+ 3= 3
et a-+ bb+3¢= 20

8a — 11b = —17 (v)

Equations (iv) and (v) arc now readily solved.
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To find ¢ substitute the values of g and & in one of the original

equations.
The process is the same for any number of unknowns,

Exgrese XTIV (a)

Salve the following simultaneous equations;

13$_33,_1g 230 +8b =19, O
_ = _ — e\
Sy 1. Ba — 4b O
a_:_-y {} _ ¢’~:‘§
5.5-% 4 5 +5h ~e
. N/
§+2y=9. 5a4~'§*¢}4-
5.2z -5y +4 =0, 6&1}\—' =1,
r+ 2y =1. 2@4—3@,« - 41.
11 ¢
Tatosg s r(2m+3y*5334~3,}+3)—1f933’ z+1).
2 T “‘.;,‘
bx + ?} = m “3}';‘“
2+1 3y—g 10. @+ 2 — 3¢ =6,
T 2 +4b ~ =9,
Y -1 Plyis - b—be =8
;f ‘% E? . 3a b he 8
1. 3T + gD — y) = 19, 18, {—5'4“?:10,
5z +yp~ Az — 9y = 1.
f:;\-'il‘ @ -y a+bd a-—1p
£ - === =5
\/ 8 6
l:}\%—gy——-—, Wz + 2y =0,
Sk -y =4 '
AN ° ki E?}-{—Ei-tl.
r‘\)‘,z i y
v 15. 70 — 3b = 30, 6.1 ,2 3_,
9% — B¢ = 34 Ty o7
a b e 5 % §-—-24
8 6 4
u’;‘,—:l_j+%215
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7. %+ 4y — 3z = —1, 18‘§+§£=g,
b + 3y — 2z - 10, % -3 = 19
Tt + 4y — bz = 3. y =19

2. Literal Equations. )
In Literal Equations, letters other than those which reprosent &

the unkmowns are introduced. Thus: A
ne
Exaneie i—ax — &) — b(z ~ a) = ¢* — b2 Find z. N
ax — ab — bz - ab = a® — B2, A
x{a — by = a® — b2, A0
at — b O
T = =m\i-b

In this and similar cxamples, ail the letters," except =, are
treated like the numbers in previous examplés;bn cguations.

Arrange on one side only all terms c,on}mning z. Carry all
other terms to the other side. Bracket\fle terms confaining z,

and fake x outside the bracket. The Fest is easy. Verify the
above result, P\ g

Kxaveoe i, arFigS%ab, . .. .. .. ()
' —brruy=a2—b. . . . . . . (i)
A a4 aby =2
_ Lo eliminata ¥, mulfi "\.é’ ) —b% + aby = a? — B
ton i) by «, and eql‘ila:gg (ii(jjtf& aZr + bEx = a’ + b,
by and subtract, ..:~:: . ;C(l‘l2 e bz} - b(az_:_bz);
N/ Soa=b
Fl‘om (1 x:\"' B .
¢ ab + by = 2ab,
QO ul ‘ by = ab;
o - Y=o .
w\:"\xf‘em}' this result by substituting these values in equation (ii).
3
\ Exerose XIV (8)
MO - a) ~ bz — by~ a ~ b, Wind 2.
g 3% _ 1

Sex = g7 Find .

b [
S bﬁ?__c 7 =x. Find x.
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SN R Ry F—— Find z and ¢,
ot o 2 Y

T,y y LT
5'E+b__b+t‘l‘ Fllldy
b.2—y=a~pandbr+ oy = 2ab. Find 2 and y,
T.1U2% =g +p + ¢, show that:

M a+b—c=20s~ ¢, ':"\ﬁu\'
W d+e~qg=2s—aq). O
(i) e+a—p = s — b). . |
adE AN 7
8 He¢ =9, find 7. 9 It A = —4—“,é1&d d.
10. = nla + ), finda. 11 ;14 o wasby find b,
12. If A = 402 find », 13 'V ~s\gir3, find 1.,
4 Q== Ws(t, — 1,)* 2\

Arrange this for caleulating ;r‘eépéct-ively:
s G g\ i) 4,

18, Ws(T ~ &) = w(g — 4, O

Arrange this in congetitent forms for calculating:

Oz W G vy s.

16 WL+ WT - 2) < _ o

Arrange thig for the determination of : (i) I,. i} .
17. WL + W(Tf =Wz~ 1) + WoS{ ~ 1),

Arrapgekhis for the caleulation of - () L. (i) s (i) z.
18 L = [(NFa). Find g,

W

19. Vz\i}l ot BV = pend v = g, substitute these values

L Nfor V and v, and fing the equation connecting D and d.
~20. H = kﬂ%:i
:\; ) Arrange thig equation for finding: (i) . (it T.
2L s =yt 4 tat,
Arrange this equation for caleulating : (1) a. (i) .
What does the equation become when 3, — 0 and @ = 321

*i, and f2 Tepresent two different values of ¢,

; The fsuhbscript’ Sgures
land 2 ape nejthey coeflicients nor ingigey v g
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2, ¢* — u? = 2as.
Arrange this for determining: (1) 5. (U) a. (1) o.
: . v U
23, What does the equation ¥ = g become when g = 7!
Arrange the equation for finding ».

o4, W02 — ud) - Fs.
Arrange this for caleulating F. .
What does the equation become when F = Wg? O\

W W . O
%, — = d and —,‘; = Dy oand Vo= w{l + ). \ >
v ¥ (‘n"

I NS ¢
Show that D = T o . .M:\\.
BF= ?E: - T—nz Tind m. -
¥ a\J
g 1ol 1 <4
“a + f =5 "‘:}
Amange this for finding: (i) f/(ii) .
B Lol e N 2
u” pT g when will bevﬁ and when - ?
BB -2 = A —~ 4) +B% + 1) for all valucs of z, find
4 and B. -

: Q
Hint: For ﬁ-n.gi;m}B, inkex = 4
0.4 =a+ bz Iik%ghen ¥ = 113, x 18 230, and when ¢ is 206,
Z 18 320, ﬁgd,a and §.
Wh:{t‘ig $he value of 4 when z = 212?

31, = 2??&%“;

) '\A‘.'_I"range the equation for finding (i) ¢. (i) &

2N Find I for ¢ = 2 and g = 32:2.
Y
3. Problems,

3%221)16?3’ which in many cases appear very difficult when an
vield feadilmade to solve them by the rules of Arithmetic, offen
ongid, Y to algebraic treatment,
Dsltder the following simple example:
three g,,;,mf::o "more passengers enter @ railway compartment, ot contains
ai@};tedas Many persons as f would have done if, instead, four
- How many were there originally in the compariment.
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- Represent symbolically all the unknown humberz,
It i wise to introduce as fow symbols as possible, '
Let Z = the number of bassengers originally present,
Then (z + 2) = the number after 2 more have entere Ke
and (x — 4) = the number if, Instead, 4 had alighted\.
Refer to the problem fop the relation which exists hetween
these numbers, &N
The problem states that (z +9) is three times (T,
Le. (2+92) =3z — g, AN
TH 2= 3p — 12NN
Az 14, Y

£

=7 L

The result can be verified by testifig) whether it satisfies the
conditions of the Problem, « W/

Thus, the problem States thatwilion there are 2 more, i.e. 9
Passengers, there are three timés &g many as there would have
been had 4 alighted, i.e. threa times 3,

The result satisfies the conditions of the problem.

Statements such ag: £ Bne nunber i go many times another,”
“ One numper Sxceeds atother by 50 much,” testit is the

fame as,” ete,, sugggst ’equality, and therefore an equation.

L. Statéthe unite Wwhen possihle,

E1. et = the numbey of shillings, grams, minutes, ete.
There ig 1o objection tq writing £

2! The same digit may, in one €ase, represent units, in another,

Thus, if the digitg of 4 tumber be z and y, the number may bo
+ ¥, or 10y + o,

3. As many equations are required as there are symholy ze-
Presenting numberg 1 be found,

4. 0dd and even numbers,
If % represents any number, odq o even, 2n will be even, for

ol
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It follows that (2n + 1) will always be odd, for the number
obtained by adding one to an even number is always odd.

When there are two or more unknowns and the relation be-
tween them is not simple enough to allow you to represent them
In terms of the symbol chosen for one, it'is better to represent
them by different symbols. As many equations as there ara
mknowns are then necessary to determine the unknowns.

Exavere.—A whole wumber consists of two digits, and 75 such t?zat.\ A
the sum of its digits is one less than one-third of the number, and if 15
wedded to twice the nmumber, the digits are reversed. Find the number.

Leb z = the first digit and Y = the second digit, \‘
Then, 10z -- i = the required number, ¢*Q
From the first statement, \
0x +y :
-l e = — Y, Y . N -
x- oyl 3 N {i)
From the second statement, \ Ny

210c + ) + 15 = 10gNME. . . . . (i)
The equations, when simplified, givew) X
Tz — 2 =88
| 19z — 8y= —15, .
 from which it will be found thas
T =@8Nand y=09.
The nurgher is theref({ie"39.

K “\ Exercrse XIV (o)
LI g cgmz Covers  miles in ¥ hr., how many yards does he
. . SoFerper minute?
2 Ifjon’e train travels at the rate of & miles per hour and another
e 4% yd. per minute, what is the difference in their speed
3 In feet per second?
- If one metre measures 39-37 in., find the difference in yards
; etween 2 miles and ¢ Km.
A gallon of water weighs 10 1b., and a cubic foot, 625 1b.
5. W 24 in galions the difforence between x c. ft. and x gall.
- When g certain number is increased by 8, the result is the

Sime a8 when its double is diminished by 1. Find the
Tumber,
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6. A straight line, 1'ft. long, is divided into two parts such
that the difierence between the parts is an inch longer than
one quarter of the smaller. Find the parts.

7. A cerfain number consists of two digits, and when 18 is
added the digits are reversed, What is the difference

between the digits? If the sccond digit is twice the first/

what is the number?

8. If a train had travelied 15 miles an Lour faster, it would ‘have
journeyed half as far again as it did. Find the specd, and
the distance actually covered in 6 hr.

9. The speed of a certain wheel, when running down, is lound
to decrease proportionally with time. At-g\cértain instant
it speed is taken, and again two minutes eftersards, when

" it is found to have decreased hy a aqiiarter. I, in coming
to test, it makes 1200 revolutions frar the time the speed
was first taken, find the originalgpeed.

10. The sum of four consecutive odd ‘h¥mbers is 48. Find them.

11. Referring to the worked e;aﬁipl:a on p. 167, the digits can
be found if it is borne inguind that they are wholc numbers.
Tind them, LN

12. Find two numbers sneh*that one-third of the first, increased
by 6, is equal %6 orie half the second, diminished by 3, and
such that theif §im is 2 less than five times their differcnee.

13. If a certain\e\tangul&r plot of grownd were 4 yvd. longer
and 2 y&, wider, it would contain 108 More SquUATe Fards.

If it’were 6 yd. longer and 6 ¥d. wider, it would contain
24§ Inore square yards. Find itg dimensions,

14. Aavat buys o dozen egas, some of which he finds to be bad.
Had he received only the good eggs for his money, the price

Y

AN per dozen would have heen a third ag much sgain. Find

the number of bad egas.

O . .
"\ 18. By selling & bicyele, 1 man gained 5 per cent. What would

\

he have gained Per cent had he sold it for half as much
agam ?

"\
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CHAPTER XV
FACTORS, FRACTIONS

1, Factors.
It is already known that:
o+ blc+ d

alc + d) + ble + d) OV

= ac+tad - be + bd.
Hence the factors of ac + ad + be - bdare{@ + b)and % ~+ ).
Now commence with the expression ac + ad -+ bc A d, Jand

retrace the steps,

{1} Bracket in pairs.
(i} Teke the commen term o
out of t-ﬁc firat  bracket (RC + (Id) +; bC + bd)
and & out of the second #‘ d) +bec+d
( BY{e + d).

‘

bracket.
{iii e+d iz common to Tboth
termea.

The factors ave (@ + b) and (¢ + d;

Note~The bracketed expressmns in the second line must be
exactly alike, N\

Exanrre~Find the factbs of 2az — ay — 4ba + 2by + 22 —y.

20 — ay — a2y 1 2'Js—g
H(9az - ay) — (b — 2by) + 22 — Y)
Ta[?.:}: — y) - 92z — y) + 12z — ¥)
D= — 2+ 1z — y).
The fa,cto;?\'a,ré (a, — 2b + 1) and (2x — ¥).
G
%' Exurcise XV {a)

Pm&i\the factors of:
\r\f"‘*w 2. a —ar. $. a*+ ar. 4 ot —azd b 2+
\ﬁ 20% — dab + 3ac — 6be. 7. az - ay — 3¢+ 3.
B.a' —a® + 30 - 3. 9. 2y + 2ay — bu* ~ o4
10. 2% — gz — 34 + 3z. 11. at + a® — 2ab® — 2%
12. 220 & 942 — Qa2 — 6P, 13, atx + dbex — bz — 4c%x.
14 () o8 ~ a% + a% — ab® + ab® — B°.

() a® + a2 — a2 — ab? + ab® + B
What, therefore, are the factors of a® — b%, and of &* + b

4]1

»

t..’
\

N
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Fadtors of o trinomial expression.
Examprr i, 22+3824-2,

If one of these terms can

be split into two, then it might be

possible to employ the method of grouping.

The middle term 8z may be written as 22 + ; then
B3+ 2=+ %42

=2z + 2) + iz + 2) L\
=(z + 1)@z + 2. O
The difficulty will be in finding how te split up the middle term,

The following rule is sound
Multiply the first and last

&

terms of the trinatnial: split this

product into two factors, whose sum ig equal td{the middle term.

Thus: () 22x 2 =222, (i

1) 222 = 2r X a3\'and 2z +z =3z

Exawpre ii. * - dx — 12.':1\\"
First % lagt = — 1252
factors = —*-6:?: and -2z,
sum &= 4.
Then, T — A — 1282 — 6x 4+ 27 — 19
SN= gz - 6) + 2 — 6)
N = (24 9z — é).
ExamprE i, N 922 + 3z — 2,
¢ ¢ Birst x last ~ —18z%,
HMactors =6x and — 3=z,
> sum = 3z.
NPT - 2=02 4+ 6 — 55 — 9
o’ =3(3x + 2) — 1(3z + 2)
O~ = (3z — 1)(3z + 2).
Aﬁmm iv.—S8pecial case: g2 — p2,

SHere the middle term is 1

\ ! nissing, i.e, it ig O.
" The expression may be writte

na* 4 0 — b2, or g? -1 Oab — BE.

First % last = —g2p

factors = ab and —ab,
gum = (),
0-2"52=a2=ab+ab-—bﬁ
= e~ b) + bla — b)

* The rule iz hag

=@+ b)a - b).

0 xbdmadyx e, 0 O (GTHB)Cad) = ace® + (ad + beje b2, Note that

o
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This last case is so important that it is well to remember it in
the following form:

The difference between the squares of lwo terms is equal lo the pro-
duct of thetr sum and difference.

Fig. 2 (p. 94} illustrates this result.

Exercise XV (B)

Factorize:

L a® — B + 6. 2. 3%+ Bx + 8, 3. 2% + = 6.4

4 224 Tx - 8. B. x2 —x — 6. 6. 1*,2—71:4*6‘
7. 2% hr — 6. 8. % — By — 6. 9. a®+ 13\51\ T 12.
10, ¢ — 13 + 12, 11. @® + 2la — 12. 12. a2 AJia — 12.

3. 0%+ 8g -+ 12, 14 @ —8a + 12, 15 @®\F4a — 12,
6. 6% —dg — 12, 17. @+ Ta + 12.° 18/0% — Ta + 12.
19, a3~a-—12. 20. g? -+ g — 12. .21 -yt

23— e 25, 4z — g, O 22 - 1.
Byt~ 1. 26, 4g* — Qb%,’:l 97, a2 — (y — 1)%
Bogt gt — oy — 1. 20892 — 40742

0. (g + 2 — (o -z BY. (@ — =z — (b +ys

3Roat+ 2 b og® - p2 2 by — =

3. {x2+ b+ 9 — gy w@—et)

Bhop—dg — g ();y\\_5

8. 42 + 192 + 5 Aoy + 19y

3. at + %% k4% Observe that
q;&,tx‘z?ﬁ_l_yq yc44—2m3g2+y4—:62y3

5T, @ — BgmpAy g, 38. a? — 2zy — 8y*.
3. 622 ~Bay — 2. 40 622 + 9y — 6y
5L 180g* — gy — 7y, 2. (b — ¢ + 9c — b).
B2+ by 442 44. a? — b + ac — be.

35- ab + 2 + blc + a)® + cla + b)? — dabe.
6. (0 +. o — {a — 27)%
47, Show that; .
107% — (02 + % — o2 = {{a + D — ¢ — (& — D)%)
={fe+b+edbte—aleta—batbdb—o)
Tat+d e ¢, show that the given expression equals
-185(s — a)(s — b)}s — ok

L'\
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48, Starting with 2% — (22 — 1) = 1, show that:

1

T s .
x4+ Vot —7] e i B

2. An Important Matter concerning Factors,

Consider the example:

.132—4&:—12=(;c—-6)(w+2). O\

If we substitute 6 for z, then ¢ — § becomes 0, and therefofs
(z — 6) ([ + 2) becomes 0. y '

It follows that tho exprossion 22 — 4z — 12 should Kive » value
0 for  equal to §. 4D

Verify this statement., N

Similazly, the expression 72 — dp — 12 i equdd’ to O when z is
equal to —2, )

The converse i trye, namely: If the, ff:ﬁ‘ﬁe of an expression
containing 2 becomes zero when & value way a, is substitutoed for
Z, then = — g is a factor of the exprosaion,

This gives you another method ofigesting the accuracy of factors.

Exawrrms. R

{i) To show that g — p i, éz;‘fin;:tor of g3 — p3,
Bubstitute b for @; then a%— 3 hooomes b8 — b, which is equal
to 0, .

o

(@) To show thatﬁ”r\ b is a factor of
PhSe) + Bo — g -+ cXa — b).
Substituting &Nor a, the expression hecomoes
O~ o) + b — ) - 2 -y,
which is s¢en’to equal 0,
Similady, show that (b —¢) and (¢ — a) are factors,

’3I§ycue Order.

R\ I‘:_1 SOMe expressions, the symbols recur in an order called cyclic,
/ Fig. 1 shows the symhols %, b, ¢, spaced round a elosed curve.
& symbols of sych 6xpressions as those given below follow
round the curve ip the same direction, hamely, clockwise.
W @=0)+(b—g)1 (g,
(u} afb — ¢ + ble ~ a) + cla ~ B,
(i) ab(e — b) + bep ~ &)+ eaf e~ @).

The sum of the terms of such expressions is often written in
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3 form such as, La(b ~ ¢), in which & (Greek letter sigma)

means the sum of terms of the type indicated by the term

i

&\

N 3

2\
o\
c & hadd
N
Fig. 1 7 .‘\i"
N "’\

afb — ¢), but completed in cyclic order for the E}uee symbols
1, b, ¢ \
Thus 2a[b — ¢} is & way of writing bm@y Txample ii given

X 3

abave, DAY,

EXEROISE X’Y *{c)

Show that 20 — 1is a fact‘o.lof gt + ot — 82 + 23z — 10.

. Show that 6a# + 2° —&g® + 23z — 10 it cxactly divisible by
z + 2. o)

- Find the factong &4 d- 43 — Tx® — 22x + 24
. Find the factors’of ot — 8a® + 17a> + 20 — 24
A\ S
. Show that{(@ + b + ¢) is o factor of a* + b% + ¢ = Jabe.

Sho&ﬂ)a‘t: a — b), (b — ¢), (¢ — a) are factors of
\ aa(b"c)—l—bsc—-a)—i-c(a—b)
«Q% " Are there other algebraic factors? Whyt

LOWrite in full the expressions:

a
Zabla -- Tath — o). S — - - ¢), Sy
abla - b), :Ma (b — ¢, rd%d(ﬁs b), “Lmab(b 9 Iy

[

= ga

J

\

8. Bhow that X(a — b) = 0.
9. Bhow that (i) Sa¥b —¢) = —(a = B — e)l{c — a)
(i) Sable —b) = —(@ — b}b — €} — @k

aly
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4. Application of Factors,

1. Bolve the equation 2% — 8¢ 4+ 9 = 0, i.e. find the valges of
z for which 2 - "3p + 213 0.

By factors, (z — Hr—-1) =0,

For a product to give 0 as the result, at least one of the factors

must be 0, _
Hence (z — 2)(z — 1) equals 0,
{i) when (z — 2) = 0, from which 2 - 2; A
@ . @-n=0 ,  Z_7 O
Check these resujts by substituting these valnes o\fw&; in turn
iz z? — 3z + 9,
~\*
ExErcisE XV (D) \%
Solve the following equations: PN
Lat— bz +6 =g, 2 2 L8g'e —g.
3. 208 — Tr + 6 = g, gl =12
5. at =12 + 4g. 8. 148"~ 15 — 32,
T2 &Y
7.¥~3.’£+8=0. ..j&&x3+14x=5.
9. 2% — 2% — gy 4. 18 =010, 22 — 4 — ¢,
11, $2+4$‘10=11.~ 12, 23 4+ 8 = q.
13 @360+ 5w B0, 14, 42 50 4 g0n 0.
15. 2% + az = 908\ 16. a%2® + 3az + 2 = o,

17. (z + 11 = g2y 18.122% — 17g + 8 = 2
19, - (at®r+ab=0. 9, 2208 4+ 92— 8p - 2 =0,
L. Examine the eXpresston,
:’;\"ﬁ+w4y+aﬂyﬂ+:c=y3+xy4+y5. N )
L5l be observed that, regarded from Jeft to right, the powers
oftah decrease, and the powers of ¥ increase, This arrangement

(i3 Very conveniont,

~
\
3

\

" If the coeffivient of any ferm ig 0, the term vanishes.

If the coefficients of ‘all termyg between the end terms are 0,
the expression given becomes z5 + e . (i)

., Bxpression (fi) can be obtained :fro.m-(i)'bj; acidir'lg }:0 '(i) terms
like the intermediate termis, but of opposite sign, thus:
a:'5+y5=;r5+a:“y~—a:‘1y-—a*’*y2+a:3y3+aﬂy3
_xsys_my4+1y4+y5.
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1. It is readily seen that the right-hand side, and therefore
#* 4 4, is divigible by £ + . _
at — %Yy 2%y — Yt + 1% (Quot.)
gyt + oty —xty —riyt ot ety —atS - oyt oyt S
e 4 xriy __T"ly _xﬁyg +$3y2 +.,"c2y3 _1=2y3_wy4+ $y4+y5

From the appearance of this example, it is evident that: ,{)\
{iy Any similar expression having its terms to the sange\ddd
power 18 exaetly divisible by z + #. A
E.g. 2%ty is exactly divisible by = + g\
Verify this. AN\
{ii) 2% — 3% is not exactly divisible by x %Y What is the
remainder in this casc? Similarly, any erne;'&ion of the ferm
odd eame odd ny
TFTE—gy v is not cxactly divisible byl y.
Examine the above quotient, and phserve that:
(i) The terms are conveniently arenged in descending and
ascending powers, and that no teynﬁfm are missing.
{ii} The signs are altcrnatelyphus and minus.
o+ 77 N .
TEY A be written down at once as:
28— afy Aty — gy + iyt — xy® + s
. a8
Similarly, Y \_ww$%ﬂ =2 —ay + Y2
The factong of 2® + y? are therefore ( + ) and (22 — 2y + ¥2).

The quotient of

2. Il}ﬂt\h}game manner, it is shown that:
B0 Y is exactly divisible by x — .
BN =~y + why — 2Py + P~ P+ P — -+ ay' 3P
: \ Nt ot ‘5—3".,3’!; - $2y2 +$y3 -!-y‘l
)y ) B oty F ity — P e — Ryt aap — a0
L= Thy -+t — By R — s ety — oyt ayt =y

\

I:G follows that x4 — y?ﬂeis exactly divisible by z — g.
Examine the quotient, and observe that:
(i) The terms run in natural order.

{ii) The sigos are all plus.
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Question: Referring to the above example, is 28 + 35

exactly
divisible by & — y ¢ If not, what is the remainder? .

8 _ 48 ]
The quotient of % —y can be written down at once, thus:
' 2 — g3

— a2 EI.
T —y T+ oy oy /
The factors of 23 — 4 are therefore (z — yhand (2 + ay g‘)\'

Similarly, verify the following exact divisions: O
s — 8 : , s &N
3. ?-1—_% =8 — xhy + zhE — Tyd + ayt — Z{‘”\ 3
6 _ 48 RS
4. Tx—__% =25+ oy + 232 4 afys + oy *y\

Observe carefully the signs of the quotients.)

Note also that ° + 3/ iz not exactly d'{ﬁs ble by either 2 - g
orx — y.

Generally, 27 — 3 = jg exactly,‘dii;zis:ible by @ 4 ¥.
Summary. L \ :

The following are exactly ditisible:

g ¢y N z+y

Ty - Si?glz.@st example, Tty = 1.

1.

ERme {N\/
odd __ odd \
z H

—T LY
2. Z-y O implest example, Ty 1.
BTED g‘:'rt?l! L
x <IN . 2 g2
3. -E‘X%_ Simplest example, %:!-_% =T — ¥
vt trn ) 2.
“4‘%— - Simplest cxample, 3;—_3 =3 4 .

O Signs. When the signs between the terms arc minus in both

) numerator and denominator, the signs of the quotient are all plus.
In all other cases the

) signs are alternately plus and minus.
In testing whether such expressions are divisible by @ £y, try
the expression of the lowest odd or even power.
E.g 2% — 41 i5 divisible by T + y, because 22 — 2 is divisible
by x 4 y.
' — 7

$ not divisible by  + ¥, becanse  — ¥ is not divisible
byx + .
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{r the expressions raay be tested by the substitution method

given on p. 172,
Thus,  — # is a factor of 2® — ¥, because on substituting y

for &,
_y9=y9_y9=0_
Tt is not & factor of 7 + 4°, because on substituting y for z,
24y =yt + oy = 27 not O

Exzrcise XV (B) ,‘\,
What are the factors of: :"35
Lo+ yst 2005 — 87 32—yt 4 aiwet
Byt 6ad 4yt T2t -yt N
Wiite down the answers to the following: O
oyt g Qs -
T (LagS, Rlyd) + @2z + 3y).
.’L‘g’—.’ J
¥ o - —
W, (828 — 2i%) + (9z — 3y). 12 e
s —yf s — b o o - 326°
B 1 — o =

16. 8how that = — 3 is a fadtor of ® — 622 + bx + 12. Find the
remaining factors, 2\
17. Btate the factors f\R"—l- %, and of R3 — ¢
18, Write down the~answer to:
(a + by — 64(c — )
(a+8) —4c— D

\ 1 (p— ot
19, slm@y (@ — bt — (& — o
a—c

(@ + by — 8(b — <)

a— b+ 2
\%4 5. Further Application of Factors.

L Highest Common Fuctors and Lowest Common Multiple of

Bopregsions.
When given expressions can be factorized, factors common fo
the eXpressions are readily found.

Exayrim—Find the m.c.r. of
278 + 62 — 20x, 2 — TT + 6, a2 — Tz + 10

P
%/
)

W
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Factorizing each expression, we have:

228 -+ 62% ~ 20z = 2x(x — 2z + B,
222 — Tz + 6 = (z — 2)(2¢ — 3),
:1:2—7$+10=(x—~2)($—5}.

Examining these factors, it is seen that the factor (z —2) is
common to all the expressions. It is, moreover, the highest
sommon factor, A o

Le. the mor. is (z~-2). The result ecan be checked Ty the
method given on page 63. QO

Exawrrr.—Find the 1.0, of N
28 + 62* — 20z, 202 — Tz + 6, 4% — Tz + 10, and @A 4z + 4.
Factorizing as before; "‘\
22% + 82 — 20z = x(z — N(z ),
22 = T2 + 6 = (z ~ 2)(2un>B),
=Tz + 10 = (z — 2.2 5),
T — b+ 4= (220 — 2) = (r - 2"
Since the L.c.M. must contain cach’ expression, it must neces-
sarily contain the factors of emoh expression, Thus, it must
contain 2z, (z + 5), (2 — 34z — 5), and ako (z — 22 If
(z — 2) to the first power ofily is included, the result will not con-
tz;i:_at the whole of the expression 2 — 41 + 4, but only one factor
01 1%

The 1.0.M. is zxgj}\mm = 3}z — B)(z — 2)%..

The result can be ehecked by division, as shown on p. 63.
2. Fractions\.)

Examerin < Simplify:

o7 e b b
§~,: ¢—b @B g+5b

A\ . . afa -+ by — 2ab — b{a — b)
The given expression = LoM. (¢ + bi(a L'?})_
__a2+ab—-2ab-ab+_bf
B {a + b}z — b)
_ 0%~ b + B2
@ F e =B

al
&

_ &= b)a - b)
(@ +bjla — b
_e¢—b

a-+ b
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22+ x—6
. . . 2 — 16
Exswere fi.—8implify: FF T
- 6x+ 8
2 -~ 6
T @42 ErHE+y N
@ -tz +6 @ide-4) -3 -2 A *
F A6z T8 ' N\
_ &+ 3z + 9 O
@ — i —3)
< 3
z? + 5r + 6 9.\
T -7z + 12 \:..‘:\"
Exanrere ifi.—Solve: z—a '&:E—b : A\

Multiply both sides of the cquation by i{.’c — a)(z — b}, the
L. of the denominators: ¢

5mm—b)——3;t::c——a)—2@r—a)(m—b)

bz? — Bbx — 3z% + 3@—2;2—2.:13-%3;-{-2&{1
Arrange all terms in 22 and i in% a:on one gide:

522 — Bp? — 2pP -l—\“3a;z: + 2ax — Bbx + 2bx = 2ab,
Observe that a2 vamsht%"

— 3bx = 2ab
N\ 2(5a — 3b) =
0l 2ab
</ - .
NS T T 55
'S
\w Exerose XV (¥)

If‘md,\ﬁheHCF and L.c.u, of:
Lg® ~ 3¢ — 4 and 22 — Bz + 4. .
\3&‘2+2m-—3 P — a2 - 1% 3. 222 — 4x — 6 and 422
4($+2)(:1:2—:c——2)andxa-xa—‘kt?*‘!:
5. 602 + ¢ — 9, 3a2 + 50+ 2, S —ad g+ 2
6. 0% — p2, g2 — 3ab + 252, qt — 2ab + B
1.6~ B3 a2 + ab + b2, a® + B,
b a

8. 8h v
Show that: 1 ey Sy ¥
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Reduce to the lowest terms:
— 32— 4 Ractorize th tor and d
9. m {Factorize the numerator an denominator.)
1 4% — 120> + 9@ 1. 24zt — 22x% + 5
0 —gw —ota £BE T T6a® — 15
e . TP — 92420 a? — 13x¢ 4 43
12, Bimplify: Aot X @ m O
- ™
.. 2 — Bt + 6 a? — Jx .&3
13. Dlﬂd_e. =~ Bz v i g }_5. (\}s
Simplify: < :\‘ g
t—b xz—¢ NN 1 6
G5 i=g) s - 1 ,a;?‘mz—m—z——z—‘
"a~-a® Ta—1 u ;r,+2'y Ay -opt @-yr

R )

-7 Br—14° 4:8—7 az
acEa RN 0,577
1 ® oo L3
2L LS _ro8 o _Tre
S E= y+@y2' e CA R e
ad B o3
23. (i . - —
(){ Do —a " P-ot-a "= -
a+ b
NGRS
A :"‘34 Find: _Ei'__l B odr 4 g b9
N 9_$+6 G-+ 37 et -t 2
VvV b 2 2
25. Di ety a b
mde b = bbya, ST E
26. From 57— ¥__ _ y
rom T2 - 2‘,1,:,3 F yz take ﬂ‘g—;'

2. Simplify: 2= 0 _ 024 B, 20% + 2ab?

e +B) "2 =W @
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Solve _
A — 10 356 2
28,12 — — T = P - 22%‘. 29, Q;Tl + 7=3 " E:_—“g
@z b ab
R A e R S
31, Find A and B suck that: £\
192 — 5 4 B ,
oy el Bl i -k St (See Ex. XIV {1}, 2?;\):\'
A\
P :Q‘ ‘
CIHAPTER XVI N

SURDS 7 \d

1, There are some roots which canqot"i)é determined exactly,
and which are thercfore most convenisntly treated ay algebraic
numbers. o™

Exampris.—+v'2, v3, V5, SBIVT, /2, 4/3, 4/4, ete.

I an attempt is made to_cxtract these roots, it will be found
that their decimal portiod neither terminates nor recurs. Neither
ean the roots be expresfed in vulgar fraction form. They are said
to be Irrational. %\"

Such roots are galled Surds.

Exercrse XVI (4)

Cale &t‘é:CDrrect to five decimal places:

N2, V3, VE, VT, V8, VIO, VI VIZ, VIS

N *? Fundamental Examples.
\\: ) () Addition and subtvaction of unlike surds.
V2 added to VB = ¥B + V2
v 2 subtracted from v5 = v5 — v/2.
The above are similar to adding and subtracting @ and b, )
Using the numbers obtained in Exercise XVI (a), the pupil
should convinee himself that VB + /2 does not equal +'7, and

that V5 — v/2 does not egual v3,
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{il) dddition and subtraction of like surds.

v3addedto V2 =2v2  Compare, g + g = 24,
3IV2 4+ 2v2 = sva. Compare, 3¢ + 2¢ = 5q.
5vV2 — 242 = 542, Compare, ba — 2 = 3¢,

Remember that in 3v/2, the figure 3 is a coefficient.

(1} Produsts and quotients of unlite surds, OV
VE3X V2=v3XZ=w8 2v3 x5V = 10V 6\
Ve ve =i vy ‘
BARE R AL i
{iv} Products and quotients qﬁ %Q\stm‘ds.
V23X V2=9 A\ V3 X V3 =3

WEX2YI=3 X2 x vIRW2=6x 2 - 12,
6v2 6 g _
WE‘—QX;@::*SXI 3.

) S{@dﬁmﬂbn of surds
Sometines a given imd has a factor which is rational. In
guch a case, the fagtOx, ¢an be placed as a coeflicient, as showz
in the following examples:
MB=VEXT=vix v2=9gys,
F3 = VEI X 3 = v8l x v§ — gv3,

,S« Exercsse XVI (g)
R\ N .
i w:l. Verify the foregoing examples by making use of the numbers
S S found in the lagt exercige,
\/ % Express in simpler form
Vel, vig, V125, V353,
S Given that v2 = 1414, v3 1733 5 2935 fnd
V'8, V2T, V4§, V12, V45,
4. Simplify: W) 8V2 - 5v3 4 gva 4 3 yaT. -
W) V7+3Y3-vEE+ VB~ v i34 vIB+ V.
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5., () 10V3 X 2v3 = 2 -

{{i) v2 X 3 x vB= ¢
2v'8
(i) (V3 + V) X V3 = k

(i) 5 X 6VE = 2
5 QV3+BVH(BVE - 2V = 1
Compare (2a + 5b)(3a ~ 2h)
7. Bxpand{ve + vD)® and {(va — +'D)
8 (i) Add 35 to 3V 2. (i1} From 8v' 3 take 3+/3.
9, To §v'5 add +125. '
10. (i) Add together v'3 — 1 and +v/3 -+ 1.

{it) Find the difference between v'3 — 1 a,nd V3 = 1. N ‘

11, Evaluste: 3{+'3 + v'2) — v'2{2 — v2) x/S(o—- 1‘/3)

12 I‘m{\l/ the difference between 1042 and W 2;,\17 2 and
i/ -08,

{iiy Dotermine in decimal form:

Vs
VA, V2, V03 + v (_'__'.‘ 0
L v, Vs + von, (T 08 x ve0z).
13, Bolve the equation,

3V + 9V = ML — V2.
M, What aze the factora of 4® — 3 cmd tai 2x? — 31

8. Applications,

~~'§
Fe

To evaluate b )

"<

%ﬁ ia advisable to zw%% urds as divisors.

1 order to remove from the denominator, multiply both
Mumerator and denomainator by v'3. Thus:

5 _5xME 5vs 5 x 132

V3 W3 3’X w3~ T3 7 3

< 2:8866... = 2887 (approx.).

This p{\ no

88 18 kmown as Ratlonalazahon of the denommator
‘?\ﬂtm n.
& jugate Surds,

:The following example is very important

(VB4 v2)v3 — v = (vs)f; - (V2

33— 2
) = 1.
Compare this with the genera] example

(o13) (Va+ vB(va—+vh=a~-b
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Observe that no surd appears in the product,

The sum of and the difference between twe surds are said fo
be conjugate.

The use of eonjugate surds is shown in the following example,

5v3 4+ 3v2
Evaluate: Ve =3vs P
Multiply the numerator and the denominator by the conjugite
_ of the denominator, Then: (\)
SV3+3v2 5v3+3v2 sva+avs 30 L+ 2148+ 18
VISIVET5VE=avs ¥ Sva v - (v PRET V5
: _48+21vs 7
T3 o)
_ 48+ 2146 v
= u____ﬁzt\\;
=8+ 3ved ™

Observe that the final resuit g myeh simpler than the original

¢Xpression, and that to obtain the afiswer no division by a decimal
18 necegsary, N\

Complete the computatimi{}& -
Exererss XV] (c)
Calenlate in the ghg\'test manner:

2 1 %% g V2
L2 1 1 1
vE V3 \ﬁ \/5 ' ' ’

V2O + va
3. J
S—v visy

AN
4, Fint/the value of __ @ + __b__ +_¢
A b+eVery a4 ¥
AN when 4=v3 b= V8—1, ¢=+v341,
(V6. Simplify: Y2 1

~O 2 T vy
\ . ’
Vo6 Multiply: (i) ayg . 3V2) by 2v3 — 3v/9).
{#) (av3 + 5v2) by (av3 ~ bv'2),
s (23 2 3
m —_— —_
(i) (v3+ vz) by (73 - Xﬁ)

7. What is the valye of 22 — 5:12, when 2 = 2 4 /32
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% Rationalize the denominators, and evalnate the following:

(i)?.—i-\/Z (i) ?;}/’34-1/2
2 -V vV3— V2’
(i) 2vh + V3 (iv) 243 + 3v2
3vh 4 2v3 3vh —2v3
9. Pind the value of (242 -+ v 3}V 6 — 4}
. THVAL, V2L—3 (va—vape O
10. § : g . g A, Qo #
implify vl VoI T 11. Calculate 5—vZ ()
12, Find the value of 2" ¥ . Y . s'“}s

z—y ‘x+y e
[ . L &
when 2 =+v3+ v2and y =+v3 — V2, "’\
§. If the side of a square iz @ and the diagon}a,bd, then
d=av2 A

It it is required to find the side in ternisof the diagonal, then

i . . . o)
t=79 which, when rationalized, befomes

g- If one of the angles of an equilateral triangle iz bisected,
ﬁ the bisector produced, fo meet the opposite side, then each

augle formed has, afigles 60°, 30° and 90° respectively. In
8 L1et BC be of uxdtylength. Then:

AB s 2 !ipié-s and AC ig V27 — 12 = 43 units,

K ‘ -
inth:'i]i;)dws that all triangles similar to this havc their sides
00f1:2:4/3, or, in order of size, 1 : v'3: 2.
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Exampre i—In a given 60°, 30°, right-angled triangle, the
shortest side is 10 om. PFind the remaining sides.

AB_ 2 i AC _ v3

BC™ 1 BOT 1

AB = 2BC; | AC = BGv'3; -~
. AB = 20 cm, S AC = 10v3 om,

i L \\~
ExsurLr ii—1In a given 60°, 30°, right-angled triangle; the
side opposite the angle 60° is 10 in. Find the remaining gides.

BC 1 r N
K= vy o . <D
AC Y )
10 , HAB = 2R0;
L BO = o, L 40v'3
V3 ] (Y, AB = —3 - in
om0~ 0005 |

Ex'EjzeiSE XVI (p)
1. Find the ratio of &he mides of 5 right-angled isosceles triangle.
2. By means o%ﬁght-angled triangle, find & straight line equal
ey

to ﬂiz;} %, when @ is the length of 4 given straight line.

NS
3. The Kypotenuse of 60°, 30°, right-angled triangie is 10 om.
o Eind the remaining sides,
4:.\\11115 diagonal of Square courtyard mengures 40 yd. Tind its
O area and the length of jtg sides.

'S Find in surd form the rigonometrical ratios of 30°, 45° and 60°.

/ 6&In ﬁ%. 2, find CD ang the area of the triangle (DB, in terms
of z.

T. In fig. 3, find CD and the shaded area, in terms of AB = .

8. The slant, edges of 4 fqoare pyramid male angles of 60° with

the base. Caleulate their length if the side of the base
18 6 In. long, .
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8, The usua! way of fitting & circular filter paper is to fold it
into quadrants and then to open it in the form of a cone.
Show that the apex angle of a vertical section of this cone
through the apex is 60°,

¥ the diameter of the paper is b in., find the altitude of

the cone,

A

4

]

]

ao) !

]

H

[}

+

D b

F

o I
&0

c — B+

Fig. 2

CHAPTER XVII
E\" .
LOGABITEMS, THY SLIDE RULE
L Lﬂganthmg*\"“

mﬁehﬁf beel}ﬁleﬂtloned on p. 49, that logarithm is another
i5 the iﬂ&a £ More particularly, the logarithm of a number
bese, At | of the power to which another number, called the

+RUUSE be rajsed to equal the given number.

:\@hmoi lluogaljl tﬁﬁﬁﬂn as the base, the logarithms are called

N ;.
wraber ‘__‘_01 } 11 | 10 {100 | 1000 | 10000
logbase 1y | o 1l 0 1 P " _

4

L] I . - 617 A.D
‘ gal‘lthms WETE 1nY apler, a Seotsmanp {1550-1 4
Therus@w T Mnventecd b?JO}.LDh p’ Seot, 55
8 b l:in b.’ Iiellfj BIl.ggﬁ (16115,) ( ] . .)‘
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Examining the above table, starting from the right and work
ing towards the left, you notice that as the numbors are divided
by 10, the logarithms decrease by 1. It follows, naturally,

that the log of 1 to the base 10is g,
) n 3 . .1 3 b - 1,
kR ar .01

Let us prove this:

re. log, 1 =
LE Iogll}‘l = “_1:
” " -2, N 10310'01 = —2 O

N

ey
10 101 since we subtract indicés When
1= T on 1001 = 109, dividing powers of ‘the same
10 base; N

Solog, =0 D

&
. 100 )
Smularly, A== o~ 106-1 = 0Ly
< logiel = 1oy
Bxampre—In the same way, shcgwx\t}iat log;01= —2, and
logy 0001~ —4 o\
Tt follows from the table that’ g
(1) The logarithms of nupibers greater than 1 are positive.
{ii) The logarithms of wembers less than 1 are negative.
2. Now consider mmpbers between
Take the numhey 3

these powers of 10.
is b_etween 1 and 2,4

@ it lies between 10 ang 100. TIts logarithm

8118 1 plus 5 decimal, . .
Similarly, $500 “between 100 ang 1000, and its logarithm is
between 2 andh3, 4nd 08 Les between 01 and -1, and therefore
its logarithm js Between —2and -],
A/
N Quesrions
N\
%{wéen what numbers gze the logarithms of
R\ %75, 3, 6, 06, 00052

. \ 8. A graph of

humbers and thejr
) from the foligws

logarithms can be constructed
VILE numbers whig
student,

h should be checked by the

V10 =105 < 3469

W = V3163 ~ 1778
101% « T - 1-334

* Similarly, the log of 1 10 any base is 0, for 501,
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107 = 105 x 105 = 3162 % 1-778 = 5623
1047 = 1075 x 101% = 5-623 x 1-354 = T-490.

— R
No. 10 | 75 | 562 | 816 | 178 ‘ 1-33 ‘
log | o8t | | 8 2| A% |

Y

From the graph {fig. 1) verify that log 2 1s -3, log5 is -7 and log6-3

is 8, approximately.

¥
7"\

Logarithms to base 10
!
9
|
E
i
|
|
|

TR T
, O

Taor_, - N

1 III
Nupbers

Tgor—a \ 1

T7ér .y

A\
Q

" Fig. 1

£

M}f ro W1th thege nq

mbers we can illustrate several important uses
garithms. portant uses

() To find log 20.

W=10x29
=101 % 10" (log,i2 = -3, i.e. 1003 = 2)
) = 10v3, adding indices

Le. logy,20 = 1.3,

I
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(i) To find log 63,
' 63 =10 x 63
= 10t x 108
=108,
ie log 68 = 1-8.

(iif) To find log 63000,

63000 = 6-3 x 16000 N
= 108 % 10 O
= 10%8, S

A

. logy 63000 = 4.8, -

5. You will notice that the decimal part of the logarithm,
viz. -8, is the same for 6-3, 63, 630, 6300, 6300Qvetc., Le. e'tl does
not change with the change of the position of the decimal point in the
‘number, ’\\

8. The whole number part of the ~’Ip\ga1-ithm, however, does
depend upon the Position of the decigial point. Thus, for 6-3 it
Is0; for 63, 1 ; for 630, 2; 6300, 8} etc.

7. The name given to thedgeimal portion of & logarithm is
mantissa, and that given t&the whole number, characferistic.
Hence we see that the eharactoristic depends upon the position
of the deeimal point, Thus, in the numbers given, it is one less

than the number of fighres before the decimaj point.
: N\

Number of figures before

the decimal poing Characteriztic ||
O 63 1 oo
~ g3 2 I| 1 |
L) - 634 g 2 !
NS 3 | :
R\ 63000- 5 ;
S e |
A\ - _ L
3 _—

Bxrnemmm {Oral)

L.log2 = .3 approx, State the logs of 20, 200, 2000, 20000,
200000, 2000000,

2 logh =7 8PProx.  Stafe the logs of 50, 500, 5000, 50000,
500000, 5000000,

4
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§, Teb us see for what other munbers we cnn find the logs
from those of 2, 5 and 6-3.

4

4d=2x2 (L) 124 = 2 63
= 103 x 1003 LB o T8
= 10", s T
e log 4 = 06, Le oz 12 Wk
Notlee tht the ehurmeterstic 2 eorg
rect. ,’\“"\
5 N O
{ii) 26 = 5 tiv) 12 ~\
10 e vk
10 LT Rubir’mﬂiﬁg indices
= 04, = 0 (diwiston)
ie. log 25 = 4. fe log 1224 = ;'}\\o;

Compare this mduffesa with that of
log 1246, AN/
Exrreise ng.f“[.-\}
L _End log 25, log {(5)%, i.c. log’l‘:?:é, log{2)®.  Can veou state the
uls for finding the log of a power of 4 number from the
log of the nuraber AN

2 Write down log 40\@'100{) and log 1'5(’

3. ch)lohthc log O:E.(“C'),,)(' 2), and of (63 x ). Can vou write down
ire rule:foga finding the log of the produet of given nutubers
e ol x’rik(:.logs of the numbers? -
- Write d}’v)m log 1-28, 126, 1260,

5. Fmi’}he log of ﬁi 63 10 250 625
2576363 87
~&0 Can you write down the rule for finding the log of a

\ }6 . .quutient from the logs of the numbers?
- Witte dowy log 25, 950, 25000.

By refers ;
of your I:;Eﬂg to the graph, verify that the mantisss of cach

s 18 approximately correct.
3. Roots a5 Powers,

We
Owhﬂi‘;’izeen on p. 48 that va x Vg = g or al,
’ Tepresent v g as 4 to some power, the index denoting

e

NN

(623

-~
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the power will be such that the sum of two such indices is 1,
It follows that each is % In other words, vg equals g
Another method of obtaining the same result js as follows;
Let va = a; then +vag x Vi = gl
Le. @ X g® = g1,

But a® X g* = qetn gp g2z,
' ' S2x=1 and o=} KoY
Similarly, v/a = a, since 1% x Va X 4Ya = g1 . o
and Va* = a¥, since af X gf = gitd - aﬁ.m'(w"
K72
Application to Logarithms, AS ’\
(i) To find log;, v 2. A)

From the graph, log o2 = -3, 'x:\
. ie, 2 = 10‘3;‘”\

3

S V2or 2‘1I = '\'/10'3{:. .}Ij%:‘ = 10’153
Le. log,v2 ?':115.
Now Yo=1414,
Hence 10gml-1ﬂ’4 ~ .15
It will be ohserved tlfad Tog, v'2 — 1log, 2.
(i) To find log, 575,
»’\3/5 =.x3/10'7 (since log, b = -1
\ </ T
O = 10%,
O
%‘./ glﬂ\/ - 3‘ i.e, glogmﬁ_
J0> Summary, '

OB The logerithm of 4 oduct is obtai vy adding the
\"\,’IBga,rit-h.ms of the factors, produch i obtained by adding

Le. log (ry) = logz + logy.

ﬁi}_ The IOgarit-h_m_ of a quotient is obta ned by subtracting the
logarithm of the divisor from that of the dividend. Thus:

& .
logz} =logz ~logy.
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er of a number is obtained by
he number by the index of the

2 &
(:Ij) == % log z.

. az a fractional power.

. XVII (B)
oot signs:
Ja, @ T

. bi)_

log v 2

792 log, 7 5E.

[ming:
ol loge8, loggo®,
10 10

10 logys 5 log;433%.

p Decimal

2

10

log 2 — log 10

3 — 1.

r g reason tONDE explained later, it
yrm, bubraml 3.
T the characteristic, and the man-

02,302 is the same as that of log, 2.

- T0955

- Jog 5 — log 1000

07 — 8

- 3.7.

is 1-7, log 0-05 is 27, cte.

rigtic of the logarithm of a pure
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decimal (1.e. a number less than unity) is negative, and is numeri-
cally one more than the number of noughts immediately aftor
the decimal point. Thus:

Number of noughts direcily | Characte istic
Number after the decirwl print of 10}; .
- _.‘- - u\
i . 0 I \
05 1 } 2 A+
005 2 3 ()
0005 3 % 7 { O
f ehi, | O

Remember that the mantissa of a logarithm is positiye

12. Operations involving Negative Characterisiies)
() To find the logarithm of (0-2 x 6-3). \
log (0-2 x 6:3) = log 02 +- log/%*s
= 13+ 08\"
= 1.3 {ﬁﬂdﬁug’ the mantissas, we get

+0-8J). Wl which s all positive.
_‘T'&’ Then I+1=0.

Remember that numbers cansied forward from the mantissae are
positive.

(ii} To find loggg. A0

(63
\ }hg g = log6-3 — log0-2

.\Na - = 08 [Sllbtracti_ng the mantissae, we
O —13| gets
"\‘:\"’ '_13 lSubtra,cting I from 0, we get +1.
N 005 T
(m@\) find log g~
NN 005
~O log 5 565 = og0-05 — log0.063

\ = b4 (Subtracting -8 from 1.7, we got ]

—3-8 (. B. Paybacklto Zund we get
_-'i__é 1 to subtract from 2, which |
A, gives I. :
The operation is actually: ;

2+17
Subtract, B+ 1)+ 8
i 1+ 9
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arried out from the equivalent form:

319
(2 + -8)
i+ 9

log 0:05 [ Multiply +7 by 2; result, -+ 1-4.
% 27 3 Muliply 2 by 2; resalt, 4,
4 1 4+ 1-d =34,

1log 002 =} x Z:3.

teristic is mot exactly divisible, the
ntly carried out by changing the
visible characteristic, in thig cage 3,
positive number, in this case 1, to

13 + 1.3) = T43.

31 + 56) = 38,

188 XVII {0}
ristics of the lopdrithms of the fol-
3, 0:00063, 090503, 0-6, 0-006003,

here imthediately after the decimal
ogarithin® of which have the follow-

Ia\B, 3, 8&?
4, 1-061 and 1-952,
3

3-826 and 2-473.

From 1-28 subtract 0-76.
Trom 1125 subtract 2-941.

and 2634 by 10.
| by 7, end 161 by 3.
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13. Logarithm Tables.

So far we have used convenient numbers only, and their log-
arithms to the first place of decimals,

It is explained in a later chapter how logarithms may he
caleulated. Tables of logarithms are given at the end of thig
book, but the student will find it convenient ynd time-saving to
have a separate book of tablas at his clbow, _

The following is an extrach from the table of logarithms: O

'\
LOGARITHMS .
ol THIRD FrooRr Fomm—? lf'[(t?UR}.-j

-

— B
0| 1 3}3[4 5l6| 7|80 12'3>~?\|5|‘6789

| First &
i Tlgures

...
=
=
(=1
[}
=
=
s
Lt
L=

0086 | 123 | 0170 | p212 0252 | 0204 | 03994 | 0374

| £'9.13 17 21| 26 30 34 38

1 ——i

|
.‘
|

% 3
B e R R E— —— | e F

1712304 1 2320 | 2855 | 22y 2405124301 2455 | 2480] 2hge i) 310‘13 15 18 20 23
S

The tables do not give the ch;i‘écteristic of 4 logarithm, but
the mantissa only, N\ :

Look at line 17, From this line, the mantissae of the logarithms
of numbers of four digitsi\the first two of which are 1 and 7, are
obtained, Thuys; (\J

(i} For log 17, We\behce the number next to 17, viz. 2304,

At the head of?he column in which this number is found, is

the figure 0, Yoy will remember that the mantissa of log 17 is
the same ag forJog 170 and for log 017, ete.

he manfitss being & decimal. is really -2304
antissa, be : y -
The &Q&i}actemtlc you must determine for yourself.
E.gllog17 = 1.2304, log 117 = 02304, log 1700 — 3:2304,
N “log 00017 = 3-2304, log 017 = 1-2304, ete,

Then log 173 = 9.9389, log1-73 = 0.2380,
log 06178 = 2:2380, ete.

h gure, and is, say, 1738, then
AVIng got the log of 173, we move along the 17 ling until we

g at the head of the columns
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the figures 1 to 9. These numbers have to be added to those
in the other columns, Thusg, in the 1T line, in the column headed
8, the number 20 is found. Adding this mmmber to 2380, the
mantissa of log 1738 is obtained, namely 2400.

{iv) For single numbers such ag 8, 7, etc., nse the lines 50, 70,
ete., since the mantissae of the logarithms of these tens arc the
same as for the wnit figures.

{v} H the numher has more than four significant figures the
nearest fourth is used. K.g. 173862 is regarded as 173900 gnu’)
the log. as 52403, O

Constaut practice in the use of these tables is esseqtié)‘l. )

. (Y
Exercise XVIIL (D) O
Using the tables, determine the logs of the\following numbers:
. 185, 16:5, 165, 1650, 0-165, 0-6168, 0-00165.
. 3, 30, 300, 0-3, 528, 32-8, OX328.
- 8961, 8561, 0-8961, 5060, 53a06, .
. 1, 0-1, G-001, 10:01, 108-2; 1002,

W 05 bD -

™\
3

14. Antilogarithms, ™%

_There are also tables dinder the title ““Antilogarithms ., Those
give the nambers comesponding to given logarithms and are used
In exsotly the same‘way as the logarithm tables. Remember that
only the mantissh, of the log is used in detcrmining the digits
which bujld up the number. Thus:

) To find he antilog of 1-2475, that is to find the number of
which the {ou is 1-2475.

In \Q& antilog tables, find the number corresponding to the
manfised 2475, viz. 1766 - 2, 1.6. 1768. These ate the digits
gomaposing the number, but the position of the decimal point

{depends upon the characteristic, In this case the characteristic

W

"lﬁi 1, and this we know fo be one less than the number of figures
efore the decimal point. There are, therefore, 2 figures before

the docima] point, and the number of which the log is 1-2475 is
therefore 17.68,

{i} To find antilog 3-0456,
. Re{ernng fo the tables, the antilog of -045 is 1109. For the
ext figure 6, add 2, and the antilog of -0456 is found to be 1111.
he characteristio 3, being negativo, shows that the number is



6. Determine by logs (2-63)-3, D
7. Using logarithms, caleniat raapand
8. Caleulate (326-4)~4, N 6 ’OM 3

..\" -
a\Y/
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a decimal fraction, and that there are two noughts dircctly after
the decimal poins.

Henee, antilog 3-0456 is 0-001111.
Tt is in the placing of the deeimal point that most mistakes are

made. Before leaving your answer, check it by sceing that the
characteristic of its log agrees with that given.

Exzroise XVII (z) 3 \
From the tables, find the antilogs of: A
1. 01684, 21684, 31684, 11684, AN 3
2. 15672, 1-5672, 3-5672. (¥

3. Arrange —0-7313 50 that only the characteridhis is negative,

then determine its antilog,

4. Of what number is 0 the logarithm? N
9. Arrange —92-3642 so that only the characteristic is negative,

then determine its antilog. A

N 1
8-36°

15. Applicationg, y

Remember that logarithuys.cannot be applied to sums and differences.
: (78369 x 2685 x 0-384

EKAMPLE L-——EY:&}E}!JG —W

The folIowingfgyé Convenient way to set out the computation.
Write A fointhe answer, then

¢ '\ Numerator
\::}IogA = (log 8369 + log 2685 + Jog 0-384)
g"\ Denominator
. —{log 9764 + log 0-067)
| 1'9227} 1-9896
= J0-4989 — {1:9896
75843 {(ﬁ%ff}{
1.9359 2ol
= 11202
< A = antilog 1-1202
19,

=13

“5
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z i Evaluate $/E569 X (-2885 x 00354
TAMPLE n.—hivalnat 97‘64: % 0'67

log & = }[(log 8569 + log 0-2685 + log 0-0334)
~(log 97-64 + log 0-67)]

: ]
1-9227 {19896
1.4289 1 }
125843 L8201 Oy
- . ¢\
8 ~Tosn 18157 &
—1-8157 A
8.1202 AN
I '\’”
3 11202 <0
-3
N\
= 1-3734; .=.\\“
- W
. A = antilog 1-378¢ *)
= 02362, O
Exaprir il —Evaluate " *X.‘ N

5798 % 287)??;}_ 1374 % VIBT
15340 7523
The two parts con &tmh by the plus sign must be ev'xluated
separately and the r& Itz added. Let the answers to the parts
be denoted by , 8bd A, respectively.
log A cxdl[lcm 6728 + 3 log 2-87 — log 15-34]
x'\" \ 0-82794+-3> 04579 —1-1858

\{\,‘ 1Ty~
O 22016~
— 11858
10158

= () 5079
. Al = antilog 0-5079
3221,

i

i



%
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log A, = log 1-374 + $log %6-47 — log 729.3
01379 + 1—6267—2 — 28628
+ 0-8336
T o9TI5
— 28628 < ¢

" A, = antilog 31087 ®)
0-01284,
A+ A= 399 A\ 3
+0-01284 AV
= T393% N\

I

i

Exzrese XVIT s
Using logarithms, compute :
1, 3B x 1593 6P W\t g 263 X 108 x 496
B T2 Y R -

s e\ 126-3 x 27005
3iay 2 231.32 r P

4. 473083, 5. 15(6: 822 ¢, 98 KBS

7. (6345 x 0-1075)% £30-00374 x 96-37)3,

N o 0 01275 x 73-24
8. (i) v/20760. GV 002078, 9. 3:2%%{57;2%.

10. Solve the equation 5+ = 190,
TG0 (03P (i) (). i) (1-04)7.

24

12, (22.15 & 4130y 13, (55-21)% x 3-142 <+ 2-906.

14 (\g&@é x 0-0173))0-4 15, offan 0P
N 000157 ' N e

S

J@:‘Find Z when 2941 — gea_

Vg, 3862 X VIEE5 | 359, 18, T(385R VAL

1128 058 T o8
19. 12-68+/0-057 4+ log tan 55°.
sin 60° .
0. log cosdp° T 1og (sin 60° cog 45°),

Work also Exercise I{c), 3 40 12, using logarithms,
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16. A Simpla Slide Rule.

Take two strips of cardboard, and on an edge of each mark off
lengths correzponding to the logarithms of the numbers from 1 to
10, and then of the tens from 10 to 100,

This can be done from the graph on p. 182 by placing the
strips along the ordinates, and marking off their lengths.

The lengths for the tens can be obtained at once from those offy
the units; for, say, log 50 = log 10 + log b, ie, the leng‘th.{fo\r“.
B0 is the sum of the lengths for 10 and 5. « \

The scale constructed is ealled a logarithmic seale. TheMapgths
upon it represent the logarithms of the numbers, aféare not
proportional to the actual numbers. ~

Bce that the scales are marked as shown in the figure.

RN
1 » 6 o010 15 g 280> 50
T E alomN ]
i

& L, N M| i
S k. 251312 13 729 B0

Wt
el eads

Fig. 2 0%

To check the rule, find the producta of simple numbers, say 2
and 3, in the following mannew:

Move the lower scale to(the right until its mark 1 is opposite
2 on the upper seale. 'Phen the rcading on the upper scale, which
15 opposite the 3 or fhe’lower scale, should be the product of 2
and 3, Notice thai\m this operation the logarithms of 2 and 3
haw_a been added\)

Division is $he/reverse operation. To divide 6 by 3, place the -
lower scalg~gb-that the 3 mark is opposite the 6 mark on the
upper sexde’’ Then the mark on the upper scale to which the 1
on the Jeiwer scale is opposite is the quotient.

Now Tuark on the seales, lengths corresponding to 12, 15, 16,
18,25, 35, 45, ete. =

A\ order to test your rule, find by its means:
VW 5x3, (i) 5% (i) 8 x5, (iv) X3 (i.e. EF’;E,—E')-

_There are several good makes of glide rules on the market that
8Ive results sufficiontly accurate for practicsl purposes. Books of
Istruction are supplied with the rules,
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CHAPTER XVIII

THE QUADRATIC GRAPH
1. Graphs of Expressiong

containing the second, but no higher
power, \ N
Take the simplest expression, 22, and plot its values for different
values of z (fig. 1} N
—1 '—3|&2!—1'; == ; o 1! li'g"i! g |
T el T 77— —- P
16 19 | 4 Pi=e=106 1 O 9 | 1
\J%_..;-_YQ' I

Examine the graph, and verify the folle\mng statements:
{i} The graph is not s straight lme but 4 ocurve with a vertex
and two diverging branches,

===-§§"-E.

(i) The valuey of 72
(iti) The graph toue

are all positive.
hes the axis of x, the vertex, in this case,
being at the origin,
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(iv) The graph is symmetrical about the axis of y; ie. if the
paper is folded so that the crease is along the axis of y, one branch
of the curve will coincide with the other branch.

{v) The curve grows straighter away from the vertex.

{vi} The gradient changes. :

(vi) The gradient is positive (up) on the right, zero at the
vertex, and negative {down) on the left. <

2. On the same azes, plot the graph of 372, and compare\m’
with that of z2. N
Observe; (i) The gladlent of this graph changes more, ra.pldly
(i1) The coeficlent 3 appears as the valug *of 82* when
xeguals 1 or —1. W

3. On the same axes, plot the graphs of 2 nd --3x2%, and
compare them with those of 72 and 3z2. \9;
You will conclude that the inversion is d\e b tho change in sign.

[Ty Y
| o « N
R ¥ 2

N ox -2

I

5%
;3
2

//r
13
@

1
Iy
[+]
>

Woas

~3x%2 [

Fig. 2
@ g‘l 2?0 ?etermine tho effect of an added constant, plot the graphs
« 2} of:

)y = 322 + 2, (i) y = 32° - 2.
i) y = —3® 2, iv) y = —32% - 2.



N\, .
miare lmaginary.

\
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Comparing these with the other graphs, it is seen that:

(i) The effect of the 2 has been to raise the graph 322 through
a distance 2 above the origin.

Observe that the graph has the same shape, and is still sym-
metrical about the axis of Y, also that the minimum vahue of
322 + 21y 2, this being shown by the Pposition of the vertax,

If a new axis of 2 is drawn through the point ¥ = 2, then the
coeflicient 3 appears ag the new value of y when 7 is 1, SO\

(i) The effect of the —2 has been to lower the graph of\3%2
through & distance 2 below the origin, « N

The graph of 322 — 2 euts the axis of 2 at two pointey &nd at
these the value of 322 — 2 5 0, The intersections of k& nxis of x
give the corresponding values of z. Observe that, on¥ is positive
and the other negative, \/

These values of z are called the roots of the eqliation,

3x% -2 =, O
from which 812 ~ 9, O
@=g O
and o= +dBor -2 _
For compactness, the I&St_liﬁé T usually written in the form
A= v

The sign + is read _’p?/i{?{i?‘ Minus.

The graph of 3x% 4\2 shows that the equation 372 -+ 2 = 0 has
ne roots, becausej}e graph does not intersect the axis of . In
such cases the rdode are said to be imaginary.

(ii}) The graph of — 372 + 9 shows that there are two roots to
the equatio{’

¢ —3F + 2 =,
(ifj%ﬁe graph of 322 ~ 2 shows that the roots of the cquation
N -3t -2<9g

Summary,
L. The graph of an Bxpression of the form qz? d- ¢ is & curve.
It is called 5 Parabola,

2. The graph is syrametrical about the axis of Y.

N the coefficiont of g2 3 positive, the vertex is downwards;
if negative, upwards,
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4, When the added constant is positive, the vertex is above
the origin; when negative, below the origin,
8. To straighten the graph of az® + c.

I the values of 32* are plotted against the values of 22 instead
of z, the graph shown in fig. 3 is obtained.

—3l—2] 1 =x=§o'1|52i-3‘4
e |1 e T T e e

i ] 4| ™
27 |12 ] 3 :3x2m‘ 0 | 3 ‘ 12 | 27 [ﬁgé”

W
The graph is seen to be a straight line of gradiehf 3\

PN

an

l
X \ , Fig. 8

Similarlyplst the vatues of
0 D2, Gi) a2 - 2, (i) 3P+ 2, (v) -8 - %,
againd, 72
A Xamine the graphs, end verify that:
N (1) All the graphs are straight lines.
N\ (1) The gradient in each casc is the coefficient of %,
(i1} The added constant is shown on the axis of ¢,
tThaf_; the graph should be a straight line will be readily under-
8 ?ﬁd if, say, 3 is substituted for 2.
hen, 328 = 3z, and the equation of the graph becomes y = 3z.

This rogult g very useful in testing whether a given seb of
mumbers follow an assumed law. '

W
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Suppose that when certain values depending upon @ are
plotted against &, a graph is obtained which looks like those of
expressions containing x%; then, in order to test your supposition,
it 1s only necessary to plot the values against £ instead of .

If the resuiting graph is a straight line, your assumption is cor-
rect.

Mereover, the expression can be written down at onee, for the
gradient gives the coefficient of z2, and the Intersection with the
axis of y tho added constant. R\ \J)

Application. A
A good example is found in establishing the law of t-hajpen"dui .
The following numbers, showing the time of s g of simple
pendulums of different lengths, were obtained b¥ & tlass of boys

_ aged 13 to 14 years:

\

O
Timo (sec.),z | 105 | 16 | 1.7ﬁ<§, 2 245 ;
| Longth (em.), 7 | 25 _50_|J 2357 | 100 | 150 |

On plotting 7 against ¢, the graplebtained appeared to be one
of the branches of g parabola, When { was plotted against 12 the
graph was found to be approximately a stralght line, the gradicnt
of which was 25 and the added constant 0. Verify this.

The relation is therefofe. ) — 2582, or £ = (0241,

This agrees closely, §ibh the formuls

NI
AL = 217\/;, where g = 981,

6. In ordgr ¢ determine the effect of introducing the first
power of Fyinto the expression, plot the graph of 22+x (fg. 4).

- = -

3—2J~1 . OI:1|2 2 |

S e el s S T

SN 612 [0 =y | 2 76 |12
\N" - - .

"\; ™ Comparing this graph with that of 2%, it iz seen that the effect

of 2 is to displace, as it were, the graph of 2 towards the sccond
quadrant, and to lower i,

The graph cuts the axis of & at two points, and the axis of
symmetry 15 no longer the axis of ¥, but an axis mid-way hetween
the two values of x for which 2% + 2 = 0, je. gt 4 = —

‘O‘bserve also that for this value of & the value of 22 +‘$‘3 iaa
minimum,
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The axia of symmetry ig readily found as follows:
Prr=@rr+t B -EFP=+P-L
If & is written for { + &), the expression becomes 7% — L
H z is measured along the axis of z, but {rom the pointz = — %,
i i0 / '\:\
L) i~
5 O
N, ° /] R
ANERER A
3] / '\\
=3 -2 Y i el 1S - %
X\
T I
Fig. 4 « \J/

and If the expression 2 — } is measyzed on a vertical axis through
this point, the graph of z2 — 1 is @ysnimetrical about this vertical
ax13, and ents it at the point —44 .

Thus the axis of symmetzpasses through the point on Oz for

which z = —1, o~
4 z’ 't 10
\\ ™
2 ‘N Axaax 2
GRS NIPENT N A irX
xt\\n'
T A 0%1' 2 [ a4
R /Z pd RN |
&
I e < —5
:"\ v X X
'"\\3 o E X bt X
\ L]
Fig. 5

Plot and examine the graphs of:

() 2 — 1,

(H) —x? - @

() —x -~ .

Verify that the vertices of the graphs of 2* and —a? are dis-
n the counter-clockwise direction by -z, and in the
¢ direction by —z (fg. ).

placed 7§
elockowis
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7. We are now able to examine the graph of an expression
containing % z and a constant.
Plot the graph of, say, 222 — 4% — 3:

[—2i—1 —a—

13 8 | = n g

The axis of symmetry evidently passes mid-way bet\chn\ﬁt‘#\o
and z = 2, ie, throngh z = 1. « \

Draw the axis, make it 8 now axis of y, and reekont values
along the axis of ¢ from this new axis of Y. N

Call the new values z; then S

=@ —1) and a~(z PN
AY;
Bubstituting this value of z in the gively pxpression, we have

28 — 4z — 3 = 90z + 1004z + 1) — 3
= 22 — 5N

This expression contains onlgtha second power of z,

Notice that —5 is the minititim value of the o ginal expression.

If, therefore, values of 278 5,1e of 232 — 4 — 3, are plotted
against 2%, the graph isé straight line of gradient 2, which inter-
sects the new axis of g at —5 (fig. 8).

The original e Nation can be obtained from the equation to
this straight ling% substitoting (x — 1) for z,

The importange of this 18, that we can test whether the
equation of\Algiven graph is of the form y=ar*+tbzr+eab
and ¢ beins, gongtants,

The, m?ﬁlod is as follows:

Q\Draw the axis of symmetry,
i) Reckon values of 2 from the axis of symmetry.

N1} PIO’; the values of y against the squares of the new values
~\. of 2.

3
\ If the graph (iif) is a straight line, the assumption is correct.
From the equation to graph (iii) the equation of the original
graph can be found,

8. A quadratic e¥pression, ie. an expression of the form

ar®+bete, can he determined if its vaimes for three Imown
values of x are known.
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Exawrres.—The values of a quadratic expression are 6, 2 and 3,
when the values of & are I, —1 and —2 respectively, Find the
expression, Substitnte the known values in the general equation: -

ar* +br+e=y;

then @+ b+ e=86 wheng =1.
@ —b-+¢=2 wheng = —1,
dg — % + ¢ =3, whenz = ~9. RO N
. NS
Solve these simultaneous equations for ¢, b and c. y W
It will be found that @is 1, b'is 2, and ¢ s 3. N
The expression is therefore o + %t -1 3. s
N
Nl Y -
] @ N
=3 :\\”'
N s ol N
W R
__‘x © R ,,;//_ Sxi-4x-8
-—___§< A '// i}
5 N o | e 3 z={x-1)
- 1 S
_‘_‘__‘_-_-__”_:2‘“-__ f A g/ . 3 4 A
- "\\
R A RS O P
T
| NS /
_H‘;&;_____Ho 5 3 |4 5 6 |7 18 |8 |Z%
I [
'"\\3 o Fig. 6
\

Exsrcrse XVIII
Find the quadratic expressions which have the given values for
the stated values of x:
L 5 when 2 ig 1; 40, when z is —4; —2, when z is 2.
2. =3, when z is 0- 6, when z is §; —19, when z is 2.
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Find functions of = which have the following valnes for the
given values of z:
. 15, when z is —2; 10, when # is 3; 1, when o is 0.
» =5, whenzis1; —b5, when 2 is -1; 46, when & i3 0,
- Dtaw a graph of z = 32,
- Bxpress 22 + 2z + 3 a5 5 function of %, where 2 = (p + 1),
. Pkgq; thesgmph of 272, and on the same axes, the graph\lf

=1 o e Gl

Add the ordinates of the two graphs, and (,qm‘pare the
graph obtained with that of 222 + 5z — 5

8. The following are corresponding values of and‘y Find the
equation connecting them:

[&] —3 | —2|-1£ 0 l' Ilk\\?‘ 3 |

EN Ti_a'__
9. Trace the graphs of yy — 22 .smd g = 5& -+ 3, and from them
find the roots of the equation 232 — 5z = 3,

10. Draw & graph of y ~ T T from 2 = 0 to a. From the
graph, show that if“the sum of two positive numbers is
given, their proddk is increased by making the numbers
more nearly egue

11, The follomng\humbers show the weight of circniar sheet
iron disgd\of different diameters, Plot the numbers, and
find the Taw conneeting weight and Jismeter.

| ¥

il

—______-ﬁ___-n_"-\_‘_- N 1 .;
|Dla.mete'\{ém) Py e T s T s T !
3 i

rA———— [ i |

12-57 12827 5028 | 7955 |

; \12 The distance throngh whigk a body falls under gravity is

~O given by the foIlawmg table:

3 .
\ [ Time (see,) ‘ ] 1 | ‘
| Distance (1) | o [ 16 -ii 64 | 144 ] 2“56 | 400 |

Measure distance on the vertical axis, and time on the

horizontal axis, and construct & graph showmg the relation
between distance and time,
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The velocity acquired by the body is given in the fol-
lowing table:

!_1|2' 3|4‘5
!32|64|96!|128|160

’ Time (see:sm |

0
‘ Velocity (It per. sec.) |

Represent the velocity on the other side of the axis used,

for distance in the digtance-time graph, and using the same, )\

axis of fime, plot on the same figure the graph of yelo-
city and time. : A

By means of these graphs, find the velocity acwred by
the body when it hag fallen through (i) 36 fi.e (i) 100 ft.,
(ili) 200 15, (iv) 320 ft.; and the distancesghxough which
it has fallen when its velocity is (i) 40 ft. Penée., (ii) 80 £.
per see., (i) 100 ft. per sec., (iv) 136 fE\per sec.

13. Show by Algebrs, in the manner used f@:{‘ + &, that on the

- axis of symmetry of the graph €% 4z — 3 the value of
182, and that the minimum valge is therefore —7.

14, Bxpress 27% + 4x — 3 in the forms 222 + a number. What is
the value of 2?7 Then show that fhe axis of symmetry
18 the line & = —1, and“that the minimum value of
21® + 4r — 3 is therefore —5.

15. The value of the ben ing' moment (M} at a distance & from
the centre of a Bedm of length I, supported at each end
aud loaded urgfermly at w Ib. per foot, is given by the
equation N\

' Q5 w
R M=§(4——:ﬂ2).

What do you know concerning the graph obtained by
ting M and x?
JFou What value of z will M be a maximum?
AN Uhaosiug suitable values for w and I, construct the
N\ graph.

\AB. When & beam fixed at one end only is uniformly loaded at
W Ib. per unit length, the bending moment (M) at a dis-

tance x from the free end is given by the equation

Constract a graph connecting M and z, and draw 8s
many sonclusions from it ag Fou can.

&
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17. Why is the axis of symmetry of the graph of g2? + bz + ¢ the
same as that of the graph of az? + bz?

18. Draw the graphs of y = 22 — 4 and ¥=4—x2 What do
the points of intersection indicate?

CHAPTER XIX O
QUADRATIC BQUATIONS o\

A quadratic equation contains the second but m'i\ﬁijgher power
of the nuknown. It may or may not contain thie st powWer.

1. Pure Quadratic. ’,:\\3
A pure quadratic equation contains gﬁx}y"the second power of
the unknown, AV
ExameLE. 372 = 108,
To solve this equation, find A and then extraet the SqUare root.
Thus; 3xh= 108,
I\ T2 = 36,
A ey v
N S

Substituting these values for z, it will be found that both +6
and —6 satisfy the equation.

2. Adfégted Quadratic.

Arddfected quadratic equation contains both the second and
theditst power of the unknown.

A ExaMere, 22422 —8=0 or 22 + 9% = 8.
)" It has heen seen already that such equations can be solved
+ graphicaily, or by the method of factors (p. 174).

There i3 anather method, which is more useful when the factors
are not at once apparent,

It consists of arranging so that the side of the equation con-
taining the unknown is a perfect square; then, on taking the
square root, the equation iz reduced to one contalning the first
power of the unknown only.
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ExaveLe.—Solve the equation 202 —7z—22=0.

{i) Take the number —22 to the
other side, leaving on the left the 2 — Tx = 22,
terms containing . R
- g —dx=11
{ii) Reduce the cocticient of 22 to s 7 2z 5 11 L a8
1, by dividing hoth sides by 2. f — g A (P = 1 +48,
{iti) Complete the square on the (o ~1)F = 228
left, by adding the third term, viz. A — 225
{-L¥ Add the same number to the -3 :l:;/s I «
other side, = £ \~>
{iv) Extract the syunare root of T=7 :?; by

both sides,
ie. T=F 4P =bh or =l Y- A
Substituting these values of 2 in the given egu! ion, it will
be found that the equation is satisfied by eithemyahte of .
' R
Exgrcise XIX [;})'\ &

|
Lk

7

Solve the equations. (Check your arisipers by substitution.)

Lfg—17=4. o2 3 + 17 = 2.

3 fx+ 12 =1. N4 @ -spE=o0.

5 2% — 16z + 82 = 0. _ What do you notice concerning the
roota ? Accou.ntfq it if you can.

§. o+ 91x + 120 =10, 7. 622 + 13z = —6.

8 62 — 1 = 5, 9. z{x — 2) + 4z = 3.

10. 62% - 172 N8 = 0. 11. 1022 + 11z — 35 = Q.

12 42% + 36575 = 9,
13, {4 902z + 3) - (102 + 3)(5 — ) = 23 — T+ 25 — Ha®.
}1{1‘4 to 24, clear away the fractions first.

80 1 g 4 B m.._.]_ g;—2

£ M, —— T el + = 1

v T +2$+ 4 2:1;__1 0. 15‘ 2+ 3 43:

1 1 1 T r-+3

16 e T I ——— J—— — = ),
=2 x+47x W arsta+s 0
T+3 x5 3z dr + 1

ig, =2 M = —

20%-:?3;4;% 912_-?]%_2_._}.1&;#2
& 3z + 1 e+ % 23
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3;1:—}-5 bzt Sz -+ 8 , 1 -3 1
Pa1Tw TR Bogyon e g
bp — 7 1 "4x-3 2 5

3. The General Quadratic Equation. ~

In the general quadratic equation, the coefficients and, the
term not containing % are represented by letters, say a, b ahdd.
The general equation is, then, e

ax? + bx + e = 0.

N
This can be solved by the method of completing Higdquare, thus:
Gt +bx = —c, NN
bx ¢ ¥
24 I 8N
T4+ a a '\\"

Complete the square by adding (2%};'\1;(\) each side:
N
et (2§ :

iR T @
. ( ,f;)z B — 4{16’.
e gy =
PR N it 7]
\'\;,} 2a 9
s, a0 P VP dae b yFE =
Thatis, 2y~ o Sa

If this ﬂjbguft be remembered, the roote of quadratic equations
ean be &ritten down immediately.

{19 “Write down the roots of 1272 — 5z —2=0

“z’\ﬁbre @=12, b= —5 and ¢= -9

N g = B+ VBT x 19 =3

W *a T e

(\ X 13
or A7) —V{TBE - 4x 12 x -3

e

_5+ VI T 5-— V35T 96

4T T

!
ol b
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Roturn to Exercise XV {p), and write down the roots from
those of the general equation, by the method just given.

The Riscriminant,
The roots of the general guadratic equation ax® + bz +¢=10 -
are, as we have just seen:
. —b+ vt —dac
2a L\
The part b2—4ac is so important that it is called the Dis-
eriminant, The nature of the roots depends upon the discriminant.

£

For example: D
(1) If b — 4dac (the discriminant) = 0, the roots ofji;\-he equation

: b
are egual, each be -, )
equol, each being equal to %2 O

i
(2 If B2 — dac is negative, the roots arg'said to be smaginary
sinee there is no real square root of a hégative number. Un the
other hand, if 4% — 4ae is positive, the'zoots are said to be real.
These results and others are illstrated graphically in the
next chapter, N _

SN g

4. Applications.

1. A chord at right apglds to the diameter of a circle.
Such a chord is bi{e\étgd by the diameter.

|
Fig. 1

Let the radius of the circle (fig. 1) be R, the length of the semi-
E%OTS, ¢, and the shorter portion of the diameter cut off by the
Ord, £,

The other portion of the diameter is, then, (2R — 1).
(cuay :
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By an important theorem in Geometry (p. 124),
¢t = 2R — 1,
from which ¢ =4+ V2R =1y,
* The whole chord is, therefore, -2/ @R =4t

o~

<

ExampLe.—In a circle of & om, radius, o chord of length 6 e
i8 drawn at right angles to s diameter, Find where the glotd

interseets the diameter, 'S
L 4 N
From ¢ = (2R — py, N
#—- 2Rt = — ¢2, K7, 2
A\
Solving this quadratic, N

B ORE+ (<R = B2 -
t~R = LvRIE Z
t=RY%VRE ¢
From the example, R is § and 04y 87

~
<N

Therefore S5 LvIE TS
Y =5-L4=090r1,
You will observe th “ﬂ;the roots are the distances from hoth
ends of the diameter,g;ﬁ; regarded from one end, say A, the chord
may be 1 em. or 9%¢m. from that end.

3. The Length of Tangents.

PT is a.?ttﬁﬁgent drawn to a circle of radius R, from point T,
at 5 %ﬁn@e d from the centre O (fig. 2.
O

T,
LN

N
S
7

£
;} .
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The angle PTO ix a right angle.

Hence PT2 = OP* — OT*
=g — R
If the length of the tangent is I,
#£=d2 - Re
or t =44/ d — R Y '\:\

Y \"’
Notice that cos £T0P = 1; This enables you to find thelangle
and the minor or major are TT. (O
\:"\\
6. The Horizon.

. To an observer at P (fig. 3), T is a pointpir&h‘e horizon which
is & circle having its ceritre on PO (the stzalght line from P to the
centre of the earth}. P \%

W Fig. 3
O
_J%calculations upon the horizon, the distance {d} of the ob-
, ﬁgf?}‘.’er from the centre of the earth is very little greater than the
;}mdms {R) of the earth.
I H is the distance of the borizon from P,

H= V@R

~ v{d F B)yd - R).

Now d is practically equal to R, and therefore d + Rto 2R, and
4~ Ris the height of P ahove the surface of the earth.
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Call this height h; then
H = v 2RhA.
If R and } are in miles, H will be in miles. T is usual to be

h ;
given k in feet, in which case 5agg Must be placed in the formula

instead of k. Substituting 4000 miles for R, the formuls becomes:
8600 e
- [= ) ¢ \)
Hiaer = 45250 A~
= 1-231vVA¥, A

Examrre—Find the distance of the horizon fm'rii' an ohserver
in & “ crow’s nest ”, 100 ft, above the surface of:}he sea.

O =1231v100 \
= 1231 miles/y "~
EXERCISE’:K:IX (B)

L. The radius of 4 circle is §'om. Find the length of the chord
at right angles to angdametor which it intersects 2 om.
from omne end. -

2. A chord measuring 4 om. is 13 em. from one end of the diameter
of a circle whigh it interseets at right angles. Find the
radius. \

3. In Exercisds't and 2, find the angle each chord subtends at
theeéntre of the circle; also the area of the segments into
which each chord divides the circle,

4. Divide’a straight line 6 in. long into two parts which would

\eontain a rectangle of ares 7 sq. in.

5},‘%&3 cross-sectional ares of a stream divided by the perimeter
of the wetted part of the channel in which 1t flows is ealled
the “ Hydraulic Mean Depth ” of the stream. Find the
hydranlic mean depth when water to a depth of 6 in, flows
through a pipe of dismeter 10 in.

8. In Robinson Crusoe, it is stated that Crusoe thought he saw
the Peak of Teneriffe from his island. Taking his height
abave sea level to be 1000 £5. and the Pealk to bo 12,200 #.
high, calenlate &ppmx'imately-how far he was from Tene

riffe; assuming his conjectures to be corract.

N\
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7. Determine the korizon for an observer in an aeroplane at a
height of 10,000 ft. .

8. Calculate the distance of the horizon from a person whose eyes
are b ft. 4 in. above sea level,

O\

CHAPTER XX 0

THE PROPERTIES OF QUADRATIC EXPRESSIONS

AND EQUATIONS, SIMULTANEQOUS BQUATIONS,
PROBLEMS !

A\
1. Quadratic Equations, Quadratic Fom{,’ Simultaneons Quad-
ratics. :
You have solved quadratic equations;” that is, you have found
Phe value of z for which a quadrasic’ expression is equal to 0.
Taking the equation y = ax? + 4% + ¢, when g = 0,

g SbE VM —b— VB = dac

20 or 2a

) x‘on \ \ ) .
These roots may teigevarlous forms. For example:

1. They may koth be positive, and different.

2. They mﬁ\?\b’dfh be negative, and different,

3. One NS be positive, and the other negative.

L. Qne'wity be zero, and the other positive or negative.

5. Xhoy may be equal, and be positive, zero or negative.

,~.6j:"TheY may be imaginary.

N\ These respective forms are illustrated in figs. 1 to 6.
voa Referring to fig. 7, if A and B are the points at which the
graph euts the axis of x, then

AB = the difference between the roots
VB — dac
=
It Cis the point at which the graph cuts the axis of , and if
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Y Y
) <4
VALY, \ \/ /
S N/ X N X N
: v 6. O
VAIAY
X Re)
|

Figs. 1o & ‘x:\"

LV
ne drawn aerosg»tfhé parabola, parallel to the

o

CD is a straight Ii
axis of z, then

CD = the suidof the roots

\/ " For, at point C‘, Zis0, and Q'
" When 1 is 0,ie e

There is, however, another point, namely D, at which the
expression is equal to ¢, To

find s co-ordinates, solve the equation
ax2+ba:+c=c, az® + br = 0,

T{ax + b) = 0,

represents the value of ax?+br+c

—bh

& =0or .
@
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That is, the co-ordinates of the point Dare & = %Iz andy = ¢.
But CD is equal to the  co-ordinate of D, and is therefore
—b
aqual t -
Hence CD is the sum of the toots.
The position and the direction of CD depend upon the signs
of b, ¢ and @¢. Draw the following graphs, and illustrate this:
() y = 222 — 4z — 6. (i) y = 22? + 4z — 8D
(i) y = 822 + 16z + 6. {iv) y = 822 — 16x 6.
Even when the roots are imaginary, CD represents thgﬁ.t’ sim.
3. Maximum and Minimam Values. S)
The vertex of the parabola gives the maximum'or the minimum
valus of the expression. AN
When the vertex is upwards, the expréssion has a maximum
value; when downwards, a minimum walze. .
Since the coefficient of 22 is negativefor the former, and posi-
five for the latter, expressions conflining —z?* have a maximum
value, and those containing -+z%& minimum. value.
Also, since the vertex is on tlig line bisecting CI) at right angles

{fig. 7), it follows that the value of = for the maximnm or i;)he
. & . . . 0D, .. -
mnmum valye of t'];fa)qu&dratw expression is 5 Le. T

When % has thig %}Iue, the expression ax? + bz + ¢ becomes:

.n'...'_bz . %gﬁc_—bz
:~> E‘l‘ﬂ, 1.e. 4@ .

O _
Exaupngi—Take the expression {22 — 6 + 4).
—b
A 2a

§ \ 4 E . - . -
“\\/When z is 3, the value of the expression is —5, and this is its
\/ Nitmum value. .

Cheok the result by finding the value of the expression when

18 2, and when x is 4, It will be found that the value when

£18 3 is less algebraically than when z is 2 or 4.

Exauerg ij.—Take the expression (4 + 6z — 22).

Here —b_ -6 _
20 -2 3.

.In\t’h\ls case, = :.(_2.__9 = 3,
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The maximum value is therefore 13.
Check this result as in the last example,
The values of the expressions eould have been found directly
dage — b2
from the formula ~— .~
4a

Exurorsy XX (a) A

oA

Draw the graphs of the following expressions, and find 'gl‘aplfi-
cally the sum of the roots. Verify by calculatich,

1. 22 4+ 5z + 6. 2. 22 — g + 8. 3. -—J;z'.\’ﬂr 6r ~ 8.
f—aF—br—6. B 2Pt 6r+2 BTN %+ 1.

Say whether the following cxpressions sdiave maximum or
minimum values, and find theny 4 cach case. Check
your results by trial numbers,

T.32+128— 2 8 6+5r— 22 9 z—a2
10. 4 — 322, 11 3+ 2980
12. 22° + 3z + 5. (NoticgO¥hat the roots of the equation

®

2t 3+ 5 =0 are Imaginary.)
13, Applying the samegfeasoning to 3 — 4z + Og?, what can you

say about its #alnes?

14. If the path ok a projectile iz represented by the equation
Y = —4%u + %2, what is its form? If z and g sre in
milgs,{determine

th\he greatest height to which the projectile riscs, Le.
the maximum value of y;
\. (11} the horizontal range of the projectile, 1.e. the distance

,’(\ between the values of # for which ¢ is 0.

..\"15} If the path of a projectile is given by the equation

m~\, ¥ = O-d4z — 00422, find (i) the horizontal range; (i} the
\/ greatest height to which the projectile rises. (% and ¥ are
in miles,)

16. Without solving the equations, state whether the following
have real or maginary roots;
@Da*+z+3=0, (ii) 22 + = = 3.
(iii) 222 + 3z -- 2 = g, (iv) 5 — 2z — a2 = 0.
(v) & — 22® = 5. (vi) 322 — 4z + 2 = 2.
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17. The minimum value of & guadratic expression is 6, 3 being the
corresponding value of , and when & is O the value is
21, Wind the expression and the roots of the equation,
expression —~= 0.

18, When = is 0, the value of a quadratic expression is —48.
When x iz 3 the exprossion has its minimura value, namely .
—75. TFind the expression. \

19. Find the value of i in terms of @ from the equation O\
32+ 2y -y =1, S\

N\
%

and say for what values of 2, ¥ is imaginary. Y
Graph a few of the real values of . O\ ¢

20.If g and B are the roots of the equ&tlon aa:?*«-P\BLE +e=0,

show that ¢ + f = _ﬁ and uff = & O
2. I e and f are the roots of the equai;l;:pg.\.‘_’»:?2 —Br+1=0,find

: \&
: . A\ d _
the equation whose roots are T3 and -

4, Quadratic Form. N

¥

Any equation which has ‘ohs orm 4z + bat + ¢ = 0 can be
solved by the methods gn e

ExameLe. 221 — 3:33\— 36 = 68 (note that z* is the square of %)
\\a:’g g2 =104

Completing the\equare,

:‘1\’335— B2 {ﬁ)zzlgé.g.lﬂ_o:%ﬁl;
N St - 3= 422
7'\
and N\ S Ry 1
s\ T é 4§_
=B or

N fc is now fonnd by 'Dalﬂ]lg the square root of 8. The other root
N\ 15, of course, imaginary in this case.

\
o= 1248,
Exercise XX (B)
Solve:
Load — 9072 4+ 64 = 0. 9, 7t — 1872 + 40 = 4.
e+ 4o =, 8. a8 — 14aP = —48.

(528) ) L
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5. Draw the graph of 2* — 1522 + 36, and determine how many
times it cuts the axis of x, and also, how many turns or

vertices it has.

8. By the method of testing factors (p. 172}, show that 4 is one

root of the equation 43 — 3ax + 243 = 0. Hence find the

Temaining roots.

7. Graph the expression 22 — 2 + 2, and find how many fimes it
cuts the axis of z, and how many vertices it has,

N
5. Simultaneous Equations containing one or more Unkhewns
7%

fo the Second Power.
Tyew L—Solved by substitution.
(a) br+%=—4, . . , W\,
y=a:3+3c+51.\j .
Equation (i) contains the first power of ;s'.:'on.l y.

From (i), Y= —4 - GV
e
Bubstituting this value in ejqiﬁg%ion (ii),
—4 —b»
TBe . = &F+ 3z + 5,

A 5y = 922 + 62 + 10,
(N 22 4 1l + 14 = 6,
This is & quadratic equation, the roots of which are:

A~ g ZH VIl — 102
© C
K = —Z or ~2
~Clrom i),y = =40
3

Yy = 247_ or 3.

(i)
(i)

Note carefully that a solution of the cquations consists of a
value of & and a corresponding value of Y. In this example there

are two solutions, viz,

@=-f y=2
and @&=-2, y=3)

<

(\)

o~
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(5} : Se+2 =12, . ... ... ()
28-3R =19, ., . . .. L (i)
12 ~ 3z
From i), ¥ = g D  Ei )
Bubstituting in (i),
12 — 3z\2
e i — e 9,
- 3( 2 ) 1 t“\.
1922 — 216z + 356 = 0. RS
*=2 or 9% Y \J
¥ is found from equation (iii). The solutions are '“"\“S
_ (z=2y=38 R
and (@ =974 = —84). W
© Ery=a, . 4N . . (D)
oy =b Y ... .. (i)
From i), y = a‘_,} Z . . ... (i)

Substituting in (ii),  xfa —2)e& B . . . . . . (V)
Equation (iv) is an ardinary qugdratw
The rest is easy. N

g
s“

Tyer IT.—A1 terms o Q&e second degree. Solved by finding the
vatio of the unknowns, { O

(@ N a6, ... . ()
o\ oy =380 . . . . . (i)
Let y = I»J:,}“Ifhen, from (i),
D 2+ k%t~ 164 . ., . - {iii)
from (i) kat=80. . . . .. (W)
Dividing (iii) by (iv) and cancelling a2,
At 1-+k2 164
'"\ N/ w-a.;.ﬂ_w— = —8-6
Cross multiplying, 80 + 80k = 164k,
80k2 — 164k + 80 = O,
or 2012 — 41k + 20 = 0,

f:mm W]lif_‘rh k= 41 :I: 4 (t}_ojz — 1600
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From (iv), # is found. Then from (ii), ¥ is found.
There are four solutions:
(=8y =10}, {x = ~8,y = — 10},

(b) 27 + Bxy + yt = 70,
62 + ay —y? = 50,
Let 3 = kz, and proceed ag in Example (a). KoY
These equations can be solved graphically, by Plotting the
values of i against values of x, and finding tho intersectioH points
of the graphs. It will be found that the graph of €he)cquation
x? 4 y* = a7 where @ is & number, is a circle whégdcentre is the
origin and whoso radius is @ (see equation, Type’}l (a)).

6. Application to Surds. N

From the identity (v 4 vy) = a:+s\1; + 2+/7y, the square
root of an expression of the type N J¥2W'M can be readily found;
for it follows that O

@ z+y=N & @) ay=M
From thege simultancouy jecl’l:fat-ions z and 3 can be determined.

Exanpr.—Find thewsguare root of 20 — 8+/6,
20 8v8 = 20 — 2v/96.
Henee, if the r%)éb 18 of the form va — v A
@ +y = 2. (if) wy = 96.
The valtiet’of = and y can be found from these simultaneous

aquatiofidybut they are obviously 12 and 8. The square root 3
thesefore” 4-(v'12 — +/8), which when simplified becomes,
O +(2V3 - 2V2) = £2(vV3 — V)

m~J

\J ” Exrrerse XX (o)

™

1. Solve the example Type II (a) by forming two e._quatdcmsf
one by adding and the other by subtracting twice equie
tion {ii) from equation (i}, and then extracting the squa
root of the resulting equations.

Holve: -
2, %x — By = 3and 2% + zy = 20. 3. r—y=38z+y=



EXERCISE 237
¢ LY o T 2
4.E+1—O—x Y 5 3—2y.
5. % ~2=xy, oy + 2 = .
STyt =20, & +y=ay — 2
T 284y =31 + 6% oy — 292 = 4.

Find graphically the values of 2 {for which the following
. expressions have the same values. Find these values. QY

B.2x —5and2® - 8z + 1. O
9. 4% -+ 82 + 6 and ~2z% — 9z — 3.
1 N °
10. 2% + 6z + 5 and 12 -+ — a*. 11. ; and 2% =& — 6.
Solve: \g
1 ]\\_«
B2 +y?=53+4dy=2 13 - +=1,6x+32=1.

W2—y=3 228+ oy = 2
Bo3@ -1 4 (y - 22 = 9, @ + gy =,
16. (i) zH g8 = 189, ',{ﬁ')"&rcs — Qxy — Y2 = 35,
oy +yt=2l 0N %2+ oay - 3yt =0
Mzty-= 517, a2 -+ y2"=’14:25.
Find the square root p;E{
18. (1) 9 + 2414, (u{\g— 2v14. 19, 23 — V10,
B.5-9ve, N 21. 36 + /1292
o Ond 2 4 p2 4afa + &)
2. %a + VBT ar + 0 \/ )
@+ v o, B ha—5 Ve —0
24, The dilference between two numbers is 4, and the sum of
\%@ﬁ' squares 106, Find them.
25.Divide 20 into two parts such that the sum of the squares of
¢\ the parts is less by 8 than forty times one of the parts.
8. The perimeter of & rectangle is 34 in., and its area 60 sq, in.;
find the length of its diagonals.
7. Fiqd & sector such that if its radius were increased by 5 in.
Its area would increase in the ratio of 3 to 2.
28. The distance in feet through which a body falls in a time
! sec. is given by the equation
d = 1682,

N
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When a stone is dropped down the shaft of & ming the
sound of its impact with the bottom is heard at the surface
10 sec. after the reloase of the stone.

1f sound travels at the rate of 1100 £5. per second, find
the depthk of the shaft.

29. Two men start at the same time for & town 75 railes distant,
. one eyeling and the other by motor esr. If the motarigt
travels 10 miles an hour faster than tho eyclist and reachesy
the town 2 hr, 40 min. before him, find the rate atsvhich
each travels, L

30. Draw and examine the graphs of i ~ 3 4+ /4 = ;E?f. R
Find (i) the range of  within which there drétwo values
of y for a value of . \Y;
(ii) The values of z for which ‘t}leI‘Kiﬂ only one value
of . 9, N

(iii} The ranges of the valnes gf:&:'for which there are
1o real valwes of y. P\

B \ 787 32
31, Draw and examine the graph‘gfﬁé{—j + T =L

What change would )'0';1 ‘make in this cquation so that
the graph would be the, eircumforence of a circle?

Regwision Exkrose 11

- /3
1. What ia the errar ph\hant musing: {i) v2+ v3forx; it} %} fory?

2. Find the equatipu'to the straight line passing through the points {4,
13} and (5, 'C5).

3. What is &Qe. equation to the straight line which cuts the axis of y ab
— 3, aufl'makes an angle of 30° with the uxis @, the seales of the axes

Xg alike?
"4, D o 75 into two parts such that one part is 9 more than twice the
s ther.
SHE=CVvEFL P2, find © when E=16], R=10, p=—407 and L=01.
w\} 67 (1) What factors of o1~ Kt 4 4 are factors of 2% — 112+ 10 also?
\ (2) Factorize: (i) #2— Gty — 1654; {1i) ot + 2a%h — 2ub® — bi;
: (1) 227 — Suty— 901 3y; (iv) 204+ 24— 8t — 48,
7. Withous nulfiplying the whole expregzions,” find the coofficient of 2% in
the product of (x2—-gp + 2) and (2% + 52— 3).
8. Bimplity: (i) 3wz—2b«/3+2v3—3«/2+5w3+wz, and find its
value when a=2 and = -3
(ii) 2ye

E= ) —ay 7y
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9. A number is exactly divisible by 3, i the sum of its digits s exacily
divisible by 8. Prove this for & number of three digits, taking @, &
and ¢ to represent the digits. [Hint: 100e= (992 +a).] .

10. Bhow that the cube of the sum of two numbers is equal to the sum of
their cubes, together with three times their sum multiplied by their
produet,

(15:83)2x 00385 264vE3T
11, Compute: = 7'\}/]_@ +1583n —gse

12. On the same diagram draw the graphs of 222 and 12— 5z, and find the\‘\
values of » for which Zxf—12 —5x. 7\
Apply what you have learnt to solve the equafion &% — Te+ 620,
2 -\
13, If A=24% and v=yg¢, show that k:;—g. “'( 3
14. Determine the cquation to the parabola passing ’shrougi% tto points,
(1, 8}, (~2, —7), and (2, 5), TFind also the co-ordipatés f its vertox.

5. Show that the least value of 32— 6r+ 5is 2, \
8. Show that log (¥ 4 v — 1) = —log(z — vg¥21). See Ex. XV(n),
48, ) \ WV

[ ]
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CHAPTER XXI
GEOMETRY Q&ND TRIGONOMETRY

1. Relations betwédes the Sides and Angles of any Triangle.

L. Let ABC be thiw triangle, the lengths of the sides being a, b, ¢
named accordipg o’ the opposite angle as shown. ) )

There are tivp cases to be considered, namely, one in which
the angle,ﬁ?}'ﬁ, from which the triangle is considered is acute

(fig. 1) N{(L he other in which the angle is obtuse (fig. 2).
N\
w\B 3
O/
e dl
q ]
] {—x) !
C D % A o TTC 3 A
Fig. 1 Fig. 2

rom B draw BD L to the opposite side (fig. 1), or the side
Produced {fig, 2).
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Let BD = ¢ and CD = Z, then in fig. 1, AD = {6 — 2} and
in fig. 2, AD = (b + z). _
Infig. 1 ¢2=qg2+ (p— ) since ZADB is & right angle
' =0 — 3% B+ g2 — 9y since df = g — z2

= a? + b — 2, T 0 )'
In fig, 2 €% =%+ (b + a2

=%~ 2+ b g2 Opy OO

=&+ e+ 2% L ., N

\

Now in fig, 1, i = cosC, from which # = ¢ cos (. i El‘lfe:rcfore,

when C is aoute, equation (1) gives PR
€ = a® + 3% ~ 23h cosC.

The case when O is obtuse needs further gopgferation. So far,
we have given no meaning to sind, cos { ton A, and the other
ratios of the angle A except for the case when A is an acute angle,
In a later chapter (Chap. XXTIT, p. 270) we shall define sinA,
cosd, etc., when A is an angle of dny magnitude. Meanwhile,
for an obtuse angle A, we give the definitions

SinA = Sin(‘]sm.__ A) l C B
CosA = — cos(180° — A)j o
Far example, ~\

€0s130° = — &8(T80° - 130°) = — cos50° — —-gusg.
In fig. 2 we therfore have
P\ % Z = @ c0s(180° ~ ()
N = — acos(,
Equ&‘t(b"a}’ (2} becomes, for C obtuse,
. ‘\ €2 =g2 | p2_ 2ab cosQ,
wieh is the same equation as the one already found for C acute.
_E®ill be noticed that the formula gives the third side when two
fides and the included angle are given,

Considering each of the angles in turn, we have the three im-
pertant equations:

a* =B 4 2 ppa cosA,
8 = ¢ + @ — 9cq oosB.
C*=a?+ B2 9gp cos(l.
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Bxasrres—Two sides of & triangle are 3 in. and 4 in. respec-

tively.

Find the remaining side when the included angle is

&) 50°; (ii) 90°; (iii) 130°.

2. Referring to fig, 1, *\t\
since
and

() o =8 + 42— 24 cos130° _(C

(i} ¢2 = a2+ b® — 2ab coaC
= 32 4+ 42 — 2 X 3 X 4 cogB0°
=9+ 16 — 24 x -§428
== 25 — 154272

— 95728, - g
6= v/957128 = 309 in. ~N\
N 3
) c2=94 16 — 24 ¢0390° A
B - W
=25 — 0, since c0390° =0, N
Soe= V33 = Bin, \
. Y,

=25 — 24 X —eos50 NN
=25 — 24 x —-6428
= 25 + 154272 OV

= 404272, O
. ¢ = V04373 = 6:358 in.

/

CD'= g cosC
™D = ¢ cosA

by &ddijc-\ii)il;\'}AO = ¢ cosA + a cosC,

§

L. ¢ & =ceosA + acosC,

Sin?ﬂw' ¢ = g cosB + & cosA,

~ & = beos + ¢ cosB.
\* /It is easily proved by using fig. 2, snd the definition
4 080 = —co5(180° — C) {p. 230), that thesc relations still

hold good when one of the angles is obtuse.
L

2. Area of a triangle in terms of its sides.

g.iverf AABC whosc sides ate g, b, ¢ units long (fig. 3).
nd its ares in terms of a, b, e.
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Preliminary: TIf s is the éemi—perimefer, then

=a+b+ec

Bubtract 2c = 2e,
then, As—¢c)=a +b - ~
Similarly, s —bBy=ct+tg—p .
O
and W—a)=b+¢—a AN
O
These relations will he usefni. P
Draw the altitude line BD, and let BD — 4 and: LD & 2. (We
can take C to be acute.) (v
0
N\

K7
~

C D &y A
Fig.'3
N
Now % = ? £ PP 9py.
AR — e
AN
Again, dE:=\a2 — 2= {a + n)(a —- T}

@ 0 12— 2 a? - b? — cf
R S
% 4 _ {2ab + (a2 + b2 — cz)} {m ~ (@? + b2 — cs)}
N 2 20
= HE B — et — (g — by
- 42 )
@+d+eat+b—e)e+a—be—a-+h
By fsctors = ——-—-—)-(—_._46}2(
28 X 2s =) x s —P) x s —a)
B dpe

Vsts — a)fs = Bjis — o

From which 4 =

L=l 8]
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Now ares of
AABC = 1bd .
Y e R =

N

= vs(s — a)(s — B)(s ~ ¢).

Exawpir.-—If the sides are 12, 16 and 20 em.,

12 + 16 + 2 QO
§ = _—2——0 = 94,
< ’S

Area = V24 x 12 x B X 4 = 9§ 8q. cm‘w’\'i.“

The discovery of this useful formula is atteibdted to Hero of
Alexandria about 80 n.c. N

&
ExEncrse XX ” v

L. Arrange the three equations (p. zm}i:for finding cos A, cosB and
wos( respectively. &Y

2. Two sides of & triangle are 7‘:511"1 and 10 em., and the included
angle is 65°. Find t{ﬂthird side and the remaining angles.
3. Find the angles of, t{fttriangle whose sides are &, 10, and 12
em., and of tha'riangle whose sides are 8, 12 and 16 cm.

4. Find the area .ofzéﬁe triangles of Exercise 3,

5. What does I-I“(;}cf’s formula become if ¢, b and ¢ are all equal
as 11}@4} case of an equilateral A of, say, side a?
6. Hem%?l‘i:ﬂula call be uged to find the altitudes of a triangle
Of Ziven sides. There are three altitudes, one for each
pwvertex; find them for the triangle whose sides are 8, 16
“\\./ and 20 pm, }
9,
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~“8trips,

CHAPTER XXIT

AREA BOUNDED BY A GRAPH, APPLICATIONS TO
MENSURATION, AND SCIENCE Q

1. Graphs., &)

The ares bounded by a graph, the axis of & and two driinates,
has & definite significance. A\°

To understand it, consider a graph parallel tosthe ‘axis of
(fig. 1). The equation to the graphis ¢ ~ O +8.¢

y -
B " xi:|\..\’

5 I ~N\

O A NS o
8¢ f il 15 X

Y Fig. 1

Draw ordinates ABG@nd CD at 2 = 5 and at 2 = 15; then the
rectangle ABDC had & length, AC, of 10 unite and an altitude of
& units. O : :

The area of ABDC( ig 50 units, the unit heing the square on
the unit of denpth,

The ared thns represents the product of 10 and 5.

The fighte ABDC can bo regarded as conssting of & number
of nafrow strips, standing on the small bases Ae, of, fg, gh, ete,,
agél\ﬂf}aving the same altitude, namely AB.
wThen, since the area ABDC ig the sum of the aress of these

ABDC = AB X ¢ + AB x ef + AB. fy + cte.
= AB(Ae + of + fg + ste.)
~ AB. AC,

Now this i true no matter how smal) the parts on the axis of

- ¥ may be,

The same is true in Arithmetic; for example, 3 Xb=
33 +.2+ 1), or 3(any set of numbers the sum of which iz 6).
An area then may Tepresent & product.
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2. Take a straight-line graph inclined to the axis of 2. Con-
sider the ares between two ordinates, AB and OD (fig. 2). In this
cage, not only does z change from QA to OC, but y also, from
AB to CD.

The area of the trapezoid ABDC may be regarded as made up
of narrow strips, the strips being so narrow that they are practi-
cally rectangles. It will be noticed, however, that the altitude
of the strips increases from AB to €D,

Y N\
a N
D~ : . 4”:‘:
'\\
B E Q)
O
‘\ Nt
0 A oo™
&N X

High2

The area is the sum of £hede small areas, and as before repre-
sents & product, but, in §his case, of numbers which are changing.

The product of 'z aud y, when = changes from OA to OC and
Y changes from AB%o €D, is represented by the area of the trape-
zoid ABD(, whigh by Mensuration is: : :

40 XAPLED ¢, AD+ OF + ED
7NV . .
\d AB ED
Q aaox BBEED o(yp 1 BD)

,,,\:'?ﬁé following examples show the importance of these resalts.

\

N ﬁDDIications.

() A body moves with a uniform speed of 16 ft. per gecond.
Onstruct_a, graph showing the relation botween speed and time,
and from it fing the distance travelled in 20 sec.
“present time on the axis of x, and the speed in feet per
Second on the axis of y (fig. 3). The graph is, of course, parallcl
to the sxis of 4, ' .
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Now, distance is equal to $he product of speed and time, and
therefore if an ordinate is drawn from 20 on the axis of T, the
area bounded by this ortinate, the graph, the axis of # and the
axig of 2 will represent the distance travelled in 20 gec.

The distance is 16 x 20 = 320 ft.

From the two diagrams, it will be seen that this result does
not depend upon the scales of the axes, ~
{ii) The work done by a force is measured by the product ‘et

oA\

Uniform Veloeity(16 Ft. per seg,
18 T T T T -

5 AT

Feet per see
3
|r]|
T
1
I3
15
)
.
SegeE

e
i
T
i
lI||J
ot
T
]

o R
BT ' ﬁ#ﬁ:’:q&t_;_ﬂ,:

9] 1T T
iy NEBEN RSN S|
JuENEN AT
9 il HEN | [ ([

A\a 10 20 Secs.
e Fig, 8

o

AN
the displacement and the force acting in the direction of the
displageytent. Show by a graph the work done sl ot of
20 Lb\ oduces a displacement, 12 ft. in the direction of the force.
This, graph, like that in application (1), is a rectangle.

1) A body with an initia] velocity of 10 ft. per second gains
\Felocity at the rate of 2 f, Per second every seecond. Construet

2 graph showing the relation between velocity and time. Fr o
it find the relation bhetween velocity and time, and also the dis-
tance travelled in 6 sec, {fig. 4).
The gradient of the graph is 2, and the added constant 10.
The cquation is therefore of the form y = %2 + 10.

Or, if we call the velocity » and the time ¢, the equation be-
comes ¥ = 2f + 10,
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When £ is 6 sec., v is (2 X 6 + 10} = 22 ft. per sec.

The ordinate at the point 6 on the axis of time represents
22 ff. per second. :

Draw this ordinate, Then, since digtance ia obtained by multi-
plying velocity by time, the avca OCD? represents the distance
travelled in the interval O to 6 sec.

. 10 -+ 22
Therefore the distance = % 6 = 96 ft. y
2 2 N
ra \ 1
N
22 Du+at N
~ 20 : N g
% " ml! N\
5 LT gt f
ol ? s
g [© A9
2 ut A
& i N
0 | | )
0 3 485 (B 7
Secoqdsy i
Figh
Observe that:

(i) The gradient of thg"graph gives the rate at which the velo-

tity changes, (Rate’of change of velocity is called acceleration.)

{i) The added cdustint is the initial velocity.

It is now easy-go-deduce the general formula for the distance
travelled in a’given interval of time by a body moving with
utiform acceleration (Ag. 4).

. Letu = the initial velocity, @ = the acceleration, i.e. the chs_mge

in velﬂ\ ity in unit time, and { = the units in the interval of time,

mckﬁf}Gd from the instant at which the velocity was u.

Lhen ¢ is the gradient of the graph, ¢ the added constant,
~aud’ the velocity » at the end of the interval of time, w + @t
Jat is the total change in velocity.)

Drawing the ordinate at point #, its length represents (u + at).

Hence the distanee {d) travelled in the interval O to t is repre-
sented by the area QOCDE.

- i
00+th0£#u (u+a)xt
2 2
= uf -+ jait

Therefore, ¢ =
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ExErcrse XXI71 (2}
Speeial Cases and Eramples

L. If the body starts from rest, = 0, Draw the graph for thi,
case, and by it determine the formula for the distahes
covered in an interval G to 7. O\

ne

. If the speed of the body is decreasing, the graph hag aNlown
gradient, i.e. the coefficient of ¢ is negative, ™

Draw a graph for this case, and deduce thé fdymula for
dizstance, 44

b

&

[

- A falling body has & uniform acceleration 0L H 32 ft. per sec.
every second (approx.). Drawa graph\abowing the relation
between velocity and time (the besly/starting from rest),
and determine the distance caveredin the following inter-
vals of time: \9 '

(1) During the first second:”
(i1) During the first st’éc.
{iti) During the intervg) from the beginning of the fourth
to the end.8f%he ninth second,

- Show on the general graph (fig. 4) that the average velocity
duting the perval O to ¢ 35 the same as tho actusl
velocity a t@e'midd.le of the interval,

. When a body, is projected vertically from the earth it loses
speed aatthe rate of 39 ft, per second every second. If
the cbel6city of projection iz 100 ft, per second, draw a
_ 2eapl showing how speed changes with time. From it
\;mm the formula for caloulating the height to which the

. \’\

'

wn

body will rise, and also the time taken,
80omplete the graph to Tepresent the return journey also.

(8. Work: done by a Variable Force.

\

\/ A wire rope weighing 10 1b. per foot is coiled on bhe
floor, Tt is gradually [ifted vertically hy taling hold Qf
one end and raising 1t through a vertical height equal to
the length of the ope.  If the length is 60 #., find the
work done when the lower engd just leaves the foor.

Plot the graph showing the force when the upper end 1s
8t various distances from the floor.
Thke work done is represented by the area of the triangle.
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6 (continued). Find also .
(i) The work done in lifting the first half of the rope.
{ii) The work done in lifting the remaining half of the
rope.
7. The following numbers were obtained in stretching a spring
by hanging weights at its free end:

04" (0-8" 167 507 WA

N

‘Increasa in length | o 027

Weight applied { 0| I, [ 2lb. | 41b. | 51 | 2515,

Draw a graph and find: S
() An equation conneeting the force and\the elongation.

(it} The work done in stretching the spring 5 in.

{it)) If the length of the unloaded/gpring is 2 ft., an
equation connecting the dength with the force
applied. Pa

8. The following nurubers give the @urrent in a short-circuited
armature for different field, gitrrents:

TN

Pield current | 0 | 0075 0-163 | 0-253 f0<342 [ ®
, — !
Arm, eurrent | 14 'g,;"k-«g 855 | 1256 | 1656 | ¥ '
, Ll ;
Find the gguation connecting armature current and field

current, 9™

AS .
o 3 The relation between the graph of “veloeity ”, and that of
Positions%%ef & body moving with uniform acceleration is spe-
cially esting,
Thﬂ,‘graphs are shown one directly under the other in fig. 5.
; fE €1nitial velocity is taken as b ft. per sec. and the accelera-
~Hou 2 2 . per sec. per seeond.
N In the upper graph, area AO1B represents the distance, § ft.,
covered in 1 sec. In the lower graph, length 1A represents the
stance covered in 1 sec. Similazly areas AO2C, AO3D, AO4E
prosent the distances covered in 2, 3 and 4 =ec. respectively,
824 in the lower graph, these distances are represented respec-
tively by the lengths 2B, 3C, 4D. Thus it is scen that the ordinates
o th.e graph of positions represent, the areas of the graph of
velocity.
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It will be readily understood that the difference between the
ordinates 3C and 2B is equivalent to the area (23D,
The lower graph is often called the integral of the upper graph.

=]
=]
T

Veloolty (Ft. per sen. )

200 .
v [HETHEES
LN ES o AT
N S EkamanE - u T
520 FHHHH A :
£ = :$:f£ P
% SERRESEY i T S
= ::%: N FE
0+ ;_}ti i s .
10 R e e 1 .—F.¢||'_t
- -+ - = |- = 2
i e
3«; ! f B T[S
il ! LS =
A 1 2 3 4
Graph of Positions or Distance
Z\J Fig. 5

N
4, Arew bounded by the Parabolie Graph.

InMensuration you have learnt that the volume of a prism
ig \ohtained by multiplying the area of the base by the height.

*

~o~There 1s another way of expressing this rule.

/N

\ B

Take a square prism and imagine a nuymber of sections all
parallel to the base to be made. These sections, called right
sections, have the same shape and area as the base. Observe that
they are perpendicular to the Ine of altitude {fig, 6).

Tke rule for volume may be expressed as the product of the
altitude and the area of the section perpendicnlar to the altitude.

If we plot the area of section and the altitude at which the
section is made for a Square prism of altitude 8 in. and side
of base 3 in. (fig. 7), the graph is 2 horizontal straight line. The
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area enclosed by the graph, ordinates at points 0 and 8 on the
sxis of &, and by the axis of & or altitude, represents the pro-
duct of section and altitude, and thercfore the volume of the prism.

i [TTT
| 1
Sectionl|. N
ot —HH N\
{8g.ins )| ] i ] ;.\
Vollafifridm 4 A\
" 1 < 3
o )
11 1 I ¢
012345678
Aftituds fing.) ’

Fig. & Yig, 7 »
o

In this case, the arca representing the wdluthe is a rectangle
(8 % 9). The volume is therefore 72 e. i

Ii we take a cylinder (fig. 8), the righj{ sections are again equal
to the ares of the base. The graph of. 8ections is therefore a hori-

T TTTT]
R ||

|
i e +
- I x
e ESiNoe e
S e
| o LT
WEER TS el e ATt tade s,
- N T
C 5 f
[y 1
2 I
N i F
£ "I' AL 1 L3
INET T
A\ 17
O\ =

I

M

T
[T
2o

Bl =
1

I
L
oo

fg{?t‘;&]igslzr‘aight line. Again, the ares representing the volume isa

it 5. Gonﬁide; next & square pyramid. Like the square prism,
® nght sections are squares, but they increase in area from the
"PEX t0 the bage,
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Now, it is Imown that the length of the edge of a secticn i
proportional to its distance from the apex. Thus, taking s
pyramid of base 12 in, edge, and altitude 8 in., the cdge and
area of section at distances from the apex are as follows:

mﬂjea of Section l
—_— T
' 0 in, 0in, ¥ 5. in. }
2 in. 3 in. 9 g, in, }
4 in, 6 in, 36 ¥g. in.
6 in. % in. 8laqg. in, 4 T
1d4 gq. in{ ™

8 in. 12 in,

7

i 0. |
% .
Plot the area of section against distance {ioh'the apex, The

graph is a parabola. The ares bounded by ‘tle graph represents
the volume of the pyramid (fig. 9). ) N

_‘_irA‘n

&
=}

. lroheg
] 5]
5 o

.-Bﬁ T

"Afew of Section in s

A more advanced student would be able to caloulate this area
from the equation to the graph. It can be obtained, however,
by counting the squares, or, better, by cutting out the fgure in
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metal or cardboard, and comparing its weight with that of &
sheet of known area, The result is 384 units, and represents
8ic in.

On the same axes represent the volume of the prism having
the same base and altitude, and compare the volumes. You
will find that the volume of the pyramid is one-third that of
the prism.

It is worth remembering thot the aren enclosed by the parabola, cm:is\:\
of 1, and the end ordinote is one-third of the rectungle having (hid
portion of the wxts of T as length and this ordinate as height. Obsérve
that the vertex of the parabola is at the origin. {See p. 2023

8. In the same manner the volume of a cone can bdcompared
with the volume of the eylinder having the same bage'and altitude.

The right seetions are circles of increasing radii,\a-ny radins being
proportional to its distance from the apex. {7

Take a cone of, say, height 8 cm, and diamiefer 12 om.

Tabulate the arcas of sections at diffésemt distances from the
apex, thus: g ™

a)
&Y

Distance from !I e N \ Section
Apes | Diameter "3 Radius ~ Area
0 cm. (+ cm., \ @ cm. - Osg.om.
2 em, 3emi) 15 em. 2.25% sq. cm.
4 em. 6 dm) 3 em. O aq- cm.
6 om. MAom. 45 om., '20-25w 9g. om,
8 . ¢A%em, 6 cm. 36w sq. cm.
)\ ¥
A

In plotting”the numbers there is no need to substitute the
dotual walie of 7. Scale the axis of area () in torms of = as
shﬁ‘a?fz.' I fig. 10, _
You will find on plotting the area of section against the dis

“ance from the apox, that the graph is s parabola. On the same
Vixes, draw the graph for the corresponding eylinder. The srcas
bounded by these graphs to the ordinate at & = 8 represent
® volumes of the cone and the cylinder respectively. On deter-
?];U-lng these, you will find that the volume of the cone is one-
hixd that of the cylinder,

ie. vol, of cone = —g = 967 c.0.
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Hence the rule:
The volume of & cono is one

the base and the altitude.
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This enables you to find the height of the cone cut off in terms

of the dimensions of the frustum.
The velume of the frustum is the difference between the full

cone and the part cone, e, =Rz + h) — toriz,

Exaupre—Find the volume of the frustum of a cone, height
b in., radius of top 4 in., radius of bottom 6 in,

- . A .

Here E - 63—4, from which 7 = 10 in. ne
The height of the full cone is 10 + 5 = 15 in. O
Vol. of frustum = 4762 x 15 — Ind® X 10 N

= 126%x c. in. K7, N\

= 398 c. in. (approx.). N

AN o

o 7
gl

AN N

Fig. 11 o Fig. 12

8. The Sphege,’/
If sections Are made at right angles to a diameter of a sphere,
) numbeio:f}p’amllel circles 1s obtained,
Th‘{iﬂ‘ﬁ s of these circles vary.
eléting to fig, 12, consider the section at & point C a distance
5-"1(0111 the end A of the diameter AB.
Lt r be the radius of this section, and R the radius of the
\Jbhere,
Lhen CD =~ y and OB = (9R ~ ),
6 bas boen established that (CD)t = AC. CB,

ie. 7 = 2(2R — @)
Now the areq of section is =72, which, by the above, is equal to:
72(2R — 2) = 95Rx — nat.
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Since this expression containg Z%, we conclude that the graph
of section and distance is a Parabola. Moreover, singe the sign
of % iz megative, and the €xpression contains &, the vertex is
upwards and situated to the right of the axis of 3.

Plot the graph for various values of &, ie. for points along
AB, and the area bounded by it will reprosent the volume of the,
gphere,

Tako a sphere of, say, 10 em. diameter, SO\

Tabulate as follows: A\

—

e e Y . |
0 0x10= 0 ' ~\Y f
1 1x 9= 9 I 7 O
2 2 X 82218 | \ 16w
f 3 3% E=21 N i
cle, &
I K Vo

The graph is shown in fig. 18,8, "

Through the vertex G dragthe straight line RGP parallel to
the axis of 2. &N

Draw the ordinate 50, Srhich tepresents the section through
the centre of the sphezes

It is readily seen that the areas BGA and GFB are each one
third of half th (xestangle AKFB, or onc-sixth of the whole
rectangle, O

It follows that the ates enclosed by AGB and the axis of @
(AB) is twosthirds of the rectangle AETE. .

The rectanigle ARFD tepresents the volume of the cylinder
whose 16iigith and dismeter each equal the dizmeter of the sphere.
This €ylinder is callod the circum-cylinder of the sphere, and its
VO\I‘&&& is 2R* x 9R = 9,Rs

PR . Vol of sphere = 2 x 2,RS ~ #nTRE,

" ForR =5 em., vol. = 45(5)3 = 5205 c.e.

Regarded from the line EF, the corner picces RGA and FGB
Mmay he taken to epresent two cones shown in the figure, each
having altitude R 'and radius of base R. Their combined volume
is £aR3, each being 7R3,

The areas of the graphs show that

circum-eylinder (27R%) = gphere {(##R? + cones (§#R?).
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This relation is of impertance becanse it holds also for parts
et off all three volumes, -

This follows because the area of section of the left-hand cone
{lig. 13) at distance o from A is m{B — z)% which iz equal to
=R — m{2R — 1), i.c. to KH, since AE = »R=.

Seclisn gf Sphere-

1 T

i1 i =] -—‘Ftl;-
r.'—f'_lu—hf‘f-ﬁ;"SrI"ré'. —hl‘i% :
L]

¢.0f Sertion from A =
il wm W v S R |

by

i5tanc
T ._*ljl *

q

.- 118,

[ - AN B
b TN I’IIII‘”JI _|
N Eam it rreH-HE
H : III=. T T j"""'..! Iél:i

- ""f%# N

\ = |1 H 'l - FLANCT !
O R e S e
N\ T PN T |

Fig. 13

ofE-g- the volume of the circum-eylinder from A fo 2 = vol.
cap of Sphere from A 4o 2 + vol. of part of cone from A to 2.
e relation enables you to find the volume of a cap of a sphere.
e ote that thy radins of any section of either of the oones is
o the distance of the section from the apex, that is from
Centre of the sphere, |
)

L 9
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Ezxamrre.—TFind the volume of a cap of thickness or aititude
2 em. cut from 2 sphere of radius 5 cm,
Part of ciroum-cylinder = « X 52 x 9 w 507 c.e,
Part of cone (frustum) = full cone — remaining cone
= g7 X 5 — in x 38

=285 = 392 cec. Q
Vol. of cap = part of eirenm-cylinder ~ frustum of cone\, ¢
(N
= 807 — 3287 = 17} vee. N>
Volume. R, = ’Isf (3R — x) + -’;f(SR* (—’Siigc + ah)

Sphere (W9 + Cones (§RE)
*3

R

Area of Curved Surface. 8\

.2

) v (2=Rx}

"\. ) Circum-cylinder — Sphere (4R
\ Fiz. 14

‘ hp"‘g%neral formula for the volume of a cap of thickness 1
CUbJxom a sphere of radius R ean be established from the fore-
gong relation.

N Pazt of circum-cylinder = R2z,
\\ " Frustum of cone = {uR? — xR ~ z)
= 37(3R% — 3Ra2 + 12)
= a(R% — Rz? + 1u2).
Vol. of cap = #R2g (R — Rz + 1a3)
= B - ix) or ima2(3R — z).
The relations are iltustrated in fig, 14,
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9. Area of the Curved Surface of a Spherical Cap.

Comparc the formula for the azea of 5 triangle, viz. half the
product of the basc and the altitude, with that for the area of
s seotor of a circle, viz. half the product of the arc and the radiue.
If the are of the scetor is called the baze, and the radius the alii-
tude, the two formuls become the Bame,

A similar comparison can be made between the rules for de-,

termining the volume of a cone having a plane base and a coné )’

having » spherical base, the centre of which is the apex of/the
cone, W

In both cases, the volume ig one-third the product_ of, the
area of the base and the altitude, From this rule, theyares of
the eurved surface of & spherical eap can be detergrinad,

Referring 1o fig. 15, ¢\

L

Vol. of spherical"’}\s\on’e = Vol. of cap + vol. of “ plane ” cone
F3P(3R — 2) + Lncd(R — 1)

(substituting 2(2R— x} for ¢?)

”\x:\ = $72%8R — 2) + Lrz2R — 2)(R — Z)
N = bwr{x(3R — z) + (2R — 2R — z}

&N\
o\ = 372(3Rz — 2?2 + 2R? — 3Rz + 22
~ \ ’ = ZmR2r,
) 4 ar »
V/ Now w altitude = vol. of “ spherical  cone;
. 3 x vol. of “ spherical ” cone
- area of base = altitude
_ & X ExR%
-

= 2nRe.
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In the case of the hemisphere, ¢ = R, and the formuls becontes

2R3 For the surface of the whole sphere, the forranly is, of

course, 4nR?: that is, four times the area of the circle of the

same radius, or 24R % 9R — cirgumfercnee % disrneter,
Note.—The ahove formulee for volumes and areas connected

with 4 sphere can be proved gimply and rigorously with the\
help of the Calenlus. {See p. 379.) \

Examere.—To find the aren of the earth’s surface within)the
horizon of an observer at g height A, e\
N/

¢ 2\J Fir. 16

Referring to ﬁ; 16, by Geometry,
a2 = k(h + D), where D is the earth’s dismeter.

From, :the"right-angled triangle PET,
O

\O A+ (h+ 18 = ki + 1),
O HD = 1)+ (ke + 12 = hip - D),
R Dt — 2+ 2y 9py g3 h® + Dh,
& . Db,
\ from which t= D -aR
If, a8 is usnal, b {s small compared with D, this equation re-
duces to

t=rh

The area of the surface of the spherical cap bounded by the
cirele through T is # Dy,
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Henge

Area, within the observer’s horizon = g
= @Dl {approx.).
Note—When A is small compared with D, the are AT is ap-
proximately equal to the tangent PT. Tlence, by Chapter XIX,
. 217, the tange of vision (AT} is v Dh. :

Exsuerr—Find the area of the earth’s surface within the (N

horizon of an observer in an aeroplane 14 miles above the ea,rtllt\
Area = 7Dh = 314 x 8000 x 11 8q. rmiles A\
= 37,700 sq. miles {approx.). ) "s
The range of vision in this case i .”‘:,\\
V8000 X 1} = v/ 12000 \
= 110 miles (approx.),
A

X 3

, Exnmrcise XXIT (A)
1. Referring to fig. 13, find the Vohi;ilé of the zone of the sphere
between the sections at e 2 and z = 5.

2. From the graph relating/to the cone (p. 244), find the area
of segtion, and then galeulate the radius of a cylinder of the
same altitude and kolume as the cone.

3, Find_the volump, of* the frustam of a cone the dimensions
heing height-30’cim., radius of top 8 cm., radius of bottom
L AN

4. Fingd th‘i\':fﬁétion left when a come of half the altitude of
@ ftQ £one Is cut off,

B. 031"?% fignres showing the graphs of sections of the sphere
80 & cone, construct rectangles, the areas of which are
"\ €qual to the areas representing the volumes of these solids.
N The altitude of each rectangle represents the mean

section of the solid, '
Find, in each case, the position at which the actual

section of the solid iy equal to the mean section.

8. Take g spherical flask, messure its diameter, longth and width

of neck, ote., and calenlate its volume. Verify your result
by filling it with water and measuring the guantity.
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7. Prociire & conieal flask, determine itg dimensiong ang calenlate
its volume. Verify as in the last casc.

8. Show that in volume, circum-cylinder of sphere : sphere:
cohes = 3:2:],

9. Find the curved surface of the cap of altitude 3 in,, cut from™
& hemisphere of radius 8 in. What is the area of the curved

surface of the remaining zone? oA
10. Establish a formula for the curved surface of the Zons of &
sphere. N

I1. Caleulate the ares of the Arctic cap of the Eji,l;jiil, and of one
of the Temperate zones. o~

12. In testing the efficiency of an electric nolor, the following
numbers were found for the cu.rrgn{\a:nd the efficiency:

Current (amps, ) 20

— _
Efficiency (%) | o | 248 !53'-5"

I
|2

2 f 5 | 125 | 15

~

\80-4 (8375 | 804 | 534

Plot the nmnber_s;i‘a'ﬂd find an equation connecting
efficiency and currens,

13. The power lost ift & motor depends upon the speed. The
following ,nl@bbrs were obtained in an cxperiment:

i A i
Speed (revs. pedmin.) | 0 | 100 | 200 | 200 | 400 500 | 600 | 560 | 1000 |
_\_-_h_j‘_"_'—h_ ‘e ___,I_._ —_— _ e — ]
Watts loa{..'- - F) 20 | 48 r 75 | 110 | 155 200]310 430
$ ]

T
,§~ "Find the law.

14';: The following numbers give the velocity of falling body
(N after it hes fallen through the given distances. Find the
\ M law connecting the two quantities,

) 3

|_Hist-a;nce (ft.m 4 r 9 [| 16 J 95 || 36 || 64 [[100

—— T | l .
Velooity (ft. per &oc. ), vf G {11-3 16 } 24| 32 ]J 40 r| 48 [ 64 | i

P

15. A spherical vessel, internal diameter 20 in., contains liquid
o a depth of 16 in, Jing the number of gallons.



EXERCISE . 253

18. The following rises in temperature were obtained after the
currents shown Wers passed for the same time through
a coil of wire placed n & quantity of water. Pind the
law.

cment(C}-.i|o|2?3‘4‘ﬁ 8

) 184 [.,24 “ 54 | 96

Rise in temperature (0}‘ 0 ‘ 6

I7. The following numbers give the distance through vg'hi(::h a
body falls from rest in various intervals of times, \

)

3 | &V

Time (sec.), ¢ ‘ 0 J 1] 2
|

| R
Digtance (ft-.},d[ 0 ‘ 16 J 64 ]l I%‘ 256

Plot these numbers, and from.$he graph deduce the
law connecting d and ¢, P \% :

I8. The tahle shows the available pdﬁer from an electric generator
when supplying the variofisicurrents given:

Power (watts) | 72\| 128 | 192 J 168 ‘ 128
xﬁ' ) il H
Current (ampse}¢|\J2 T 4 ‘ 8 ‘ 14 ‘ 16

Find the.daw connecting power and current, and the
value 9f fire current for which the power is a maximum,

9N
19. A cone10 om., high floats, spex downwards, in water,
dits apex is at such a depth that half its volume is
o\ \Deneath the surface. Find how far the apex is below the
0N Burfage,

\ 20, A bollow tin cone (diameter of bage 12 in., altitude 1_2-- ill_-),
“when Placed, apex downwards, in water, floats with ifs
3pex 8 in. helow the surface, ‘
. B0w much farther would it sink if water were poured
1010 the tin cone to g height of 6 in.?

(Bemember that a floating body displaces a volume
of liquid whoge weight is equal to that of the body.)
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10. The calibration of a cylindrical petrol tank with length
horizontal makes an excellent exercise. The problem ig to express
depths of liquid in gallons,

Take & tank of diarneter 19 jn. and length 36 in. and find the
volumes of liquid for depths incroasing by an inch,

The volume of liquid for the depth DO (fig. 17) is the ares of,
the segmont ACH multiplied by the length of the tank. \

The segment ACB ig the difference between the seetor ‘O\AQB

O
Fig.’ l?tw.
and the triangle OAB. The %nélé'of the sector s twice the angle
whose cosine is i ‘r:.;

For the depth 2 iq.,,&?e caleulation is as follows:

Cos 2 AOD) = -‘é\ﬁﬁ’ From tables, 2 AQD = 4g°,
S ZA0B =9¢°,
4 96

Ares of ’sgtiﬁef’OAGB = 385 X 76% =~ 302 sq. in.
AD =B3048° = 6 x 7431 ~ 446 ip,
Ar 3:§f’A\AOB =446 x 4 = 17.8 sq. in,
i wirea of segment ACH = 30.9 — 17:.8 = 124 &q. in,
¥ol. of liquid = 124 x 3¢ ¢, in.
AN

{ 124 x 38
<\s; o = ‘_‘ﬁ2—8— > 61}: gaﬂ.
= 16 gall,

Continue the caleulations to depth 6 in, Trom the results the
gallons for depths 6 tg 19 in, are easily obtained. Then graph
gallons against depth and from the graph read off the depths for
integral gallons, 1, 2, 3, ete. Calibrate a dipstick in gallons from
the resnlts.
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11. Surfaces and Volumes of Revolution. Theorems of Pappus.*

L If a line of a plane revolve about an axis in the plane, the
ares of the surface generated is equal to the product of the length
of the line and the length of the path deseribed by its centre of
gravity.

1. Tf a plane area revolve ahout an axis in its plane, the volume,
generated is equal to the product of the area and the length of thie )
path deseribed by its centre of gravity. NN

(The axis must not intersect the generating line or area } >y

S

s T . W)
N

The theorems will be iIlu-stra;ﬁéd by the revolution of a rectangle
ABCD about one side (BChas axis (fig. 18).
By a complete reﬁ({f‘uﬁon:
(i) AB gefidrates a circle,
() AD,geerates the curved surface of a eylinder,
(i) Arba” ABCD generates the volume of the cylinder.

; ;"\". )
() Calling AB, R, the 0.G. of AB (1) is distance % from the axis,
andshe'length of its path is ng = «R. By theorem I, area gen- .
AN
“$mted by AB = R x R = B2, :
V1) The .. of AD {2) is af ita middle point and this is distance

& from the axis. The path deseribed is 27R. If the length of AD
18 L, then the areq generated is, by theorem I,

L x 27R = 24RL.
* The Theorems of Pappus (ahout 4.p. 300} are sometimes attributed to

Guldins, who redispoverc o revived them about 1640. -
{c23)



256 SURFACES AND VOLUMES OF REVOLUTION

{ii) The 0.G. of rectangle ABCD (3) is distance % from the

axis. The path described is 2v% m 7R, The area of ABCD i
RL and by theorem II, =

Volume generated = RL x #R — wR2L, -~
Le. area of bage x height.

These formul agree with those already established, )
™\

Application of the Theorems. PAN N
1. Anchor-ring or Tore, e \ ¢

The ring is generated by the revolution of g.8irtle about an
axis in the same plane, \¥%

Let 7 be the radins of the cirole and 1 the\distance of its centre
from the axis (fig. 19). 2,

Fig. 13

P4\

o\
The centre of grawity of both the circumference and the area
of the circle is its%tre, and the path described in a revolution
round the axis i§“therefare 2R,

By theoreni’¥, “surface generated by the circumference of the
cirele O

#

'»\.;, = 2rr x 7R = 47T27'R.
B}f%ﬁéc;rem T1, volume generated by the area of the circle
2 :; = gl x R = 27?_2?,311'

a\ \ 2. The theorems ean be used to calculate the position of certain
\/centres of gravity, by means of known formule of surface and
volume,

For example, the arc of 5 semicircle rotating about the diameter
a8 axis gonerates the surface of g aphere, and the area of the semi-
eircle the volume of the sphere. From the kmown formule the
Pposition of the O,G. of semicircular arc and the C.G. of & semi-
circle can be found.

By symmetry, the €.QLg are along the middie radius,
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Lot ¢ = the distance of the C.G. from the dismeter as axis
(Ag. 20).

For the semicirenlar are, by theorem I,
Are X path of C.G. = Surface of sphere,
7R % Zwx = 47R2.

z o 2B 1-71R (approx.).

Fig. 20 .\ .

For the ares of the semicirclg;{ls?;,’r‘theorem I,

Area X path of C.0% = Volume of sphere.
3rRAK Zuz = 40,
7R _up

O\ T3, TS
MY /)

N Exzrerse XXTI (c)

\V )
L. Find'the’volume and surface of a ring the outside diameter
\of'which is 24 in. and the inside diameter 12 in. .
2\Shbw that the C.G. of the complete boundary of a gemi-
"\ circle is %R along the middle radius from the d,lamete'r.
V. Caloulate the surface and volume generated by the revolution
of & semicircle of 6 in. radius about an axis in the same

plane, parallel to and 18 in. from the diameter, meagured

away from the semicirele, .

4. Find the surface and volume of a ring of square section, the
inner and outer diameters being 24 and 30 in. respectively.
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CHAPTER XXIII

TRIGONOMETRY, APPLICATIONS TO MECHAN 1C8, ETC;\

1. Trigonometry,

o 2
. . . . " £
Trigonometrical Ratios and thetr Relations, \)

Tt is important fo note how
are written. B.g. the square

. NS T
powers of the trigonometnieal ratios
of sin A is written sin'%:.g'

. 1 O
Again, 845 = .

A 7 c
:'wg\ Fig, 1
. A
Referring to the right-angled triangle ARC {fig. 1),
A\
s\, a® 4+ 2 = o8
NGO :
Divigi,e\:zz,ﬂ through by ¢2; then
¢ 2 2
{"\ [#3 i1
' {\ wt o3 + = 1,
") a\2 By2
O

<. 8in®A + gog?A =1,

Exsretse.—(1) Arrange this for finding:

(i) sinA in terms of cosA,
(1) cosA in torms of sin A,
(2) Choose any angle, and from

the values given
in the tables verify this relation.
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2. Kames of the Reciprocalé of the three Trigonometrical
Fmnetions given, .

The reciprocal of the sine ratio is called the cosecant-—written
. . e
shortly eosee. Thus, referring to fig. 1, cosecA is Z
The reciprocal of the cosine ratio is called the secant—writte

N

shortly sec. Thus secA is g & \A
The reciprocal of the tangent ratio is called the cotapgent—

written shortly eof. Thus cot A is 2 ) ~‘ O3
Summarize these statements in the form: ."‘;\\

. 1 "1
A fna seeh o gp comods g p
3. Starting with the relation LV
a + b = A\
and dividing in the first instance Jy-a?, and in the second by
¥, find relations corresponding tocthat in 1. Your results should
e: .
() cosec®A — cot?A =" (i) sec?A — tan’A — 1.
Al thege relations, an«.Kﬁhe method of establishing them, skould
be remembered, )
&
. Exrrerse XXIIT {a)

@ _
1. Making.dsg of the reciprocal functions, find cosee30°, sec30°,
c08307, and these functions of 457, 60° and 90°.
2 Gii%\the reason for the following equalities:

WO\MDFA + cos2A = cogecA — cot? A = geclA — tanA,

7 NS Vg
"\ ATty 7 c0s*A, find V when 2 is 5, A 30° and g 32,

3

¥ 4. Express cos®A in ferms of sec?A, then convert sec?A into

tan®A, and so obtain cos? A in terms of tan®A; confinuing,
obtain cos?A in terms of cosec?A. ' .
. Beginning again with cos?A, obtain costA In terms of
S04, and from this, in terms of cogecA.
Sce that the two results agree,

5. Find 8nd in terms of sec A,
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6. Find cosA when tan A — % and cosA when cotA — &
7. Show that
(i) sin®A + tan®A = sec2A — cos® A,
(ii} sin?A{1 + cos®A) = 1 — gostA,
8 In fig. 1, the angle B is equal to (90° — A); hence find the _
trigonometrical funetions of (90° — A) in terms of fune.

tions of A. E.g. cosecB = cogee(90° — A) = g = sec:{k\
Thus: . O
os(90° — A) = sinA;  sin (90° — 8) = cos Ay
eot(90° — A) = fanA;: tan (90° — A} = ,cof\tA;
Cosec(90° — A) = secA; sec(90° — A) F\bosec A.
9. Find tanA in terms of (i) sin A, {ii) cosA. \
10. Plot the values of the six trigoriometri&t}l' ratios for various
values of &, where 2 Tepresents, phe, angle from 0° to 90°,
4. The following apphcations to 'Méc'}ia-nics are important:
{1) If OX and OV Tepresent forges acting at a point O (fiz. 2,

then OR, the diagonal of the patellclogram OXRY, represents *
their resultant. (Lines like 0X,%0Y and OR are called Yectors.)

¥ 2 R

o - L ﬁ_(
N €7 X 'p
O Fig.
O i ,
From (the” forces OX and OY, and the angle between their
dirqu&a", the value of OR cant be caleulated,
Draw RP perpendicidar to 0X, or to OX produced.
~LXP is called the projection of XR on 0X.

\/ Observe that LRXP = £Y0OX,

Now }}{%I{) = cos L RXP
=c08 LY0OX; .
S XP = XB % cog £YO0X, P ¢

* Discovery attributed to Aristotle (384422 B.0.).
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Let the forees be x and y, the angle bhetween their directions
A, the projection XP, p, and the resultant of i and Y, 1.
Then, by Geometry,

Ti=2% + 2+ 2ep
=2* + y? - 2xy cos A* {from (i), and since XR = 0Y),
ie. = vz + y? + 2ry cosA. N 1]
The angle ROX, which OR makes with OX, is determined¢ds))
O

follows:

N/

OP =0X + XP =z + y cosA (s.}"
0P 2z +ycosA N
and cos ZROX = oR = _'_—T._"", '"‘:\\
: . o T + A
Le. the angle ROX is such that its cosine is e u@g.to x_g;c_oa__
' T+ cosA)
F 4 T ’
Thus, cos~1% means, the angle whosé cosine is 3. What is
this angle ? R

LN
%

EmMPLE.—Fin& the resulta.jit’:(‘)f forees of 10 1b. and 6 Ib.
aciing at an angle of 50°, at the same point.

7= V{62 LU0 + 2 X 6 X 10 X cosh(®
= v.13§‘+ 120 x 6498
= /186 + 77-14
=V21314
Ko 2003
. The di¥9<§t&>£ of 7 is guch that the cosine of the angle which
1 makg\miﬁh the direction of the force 6 Ib. is equal to

The method of writing such an angle ig'e0s—1 (

A\ 6 + 10 cos50 _ 6 + 10 X -6428
NS 46~ 146
W _12:428
v T
= -85I1.

From tables cos~1 8511 = 32° {approx.},

Le. the resultant makes an angle of 32° with the direction of the
ores § 1,

* When A is obtuse, cos A is negative,
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(2) The vector principle is applicable to velocity,
hen, for exampie, a marble ig rolled across “the floor of 5
moving railway carriage, the velocity of the marble regarded from
the ground is the resultant of the velocity across the floor and the
velocity of the floor, The velocity of an aeroplane is practically
the resultant of the velocity it wonld have in calm air and the
velocity of the wind.

Imagine that an aeroplane travelling N.E. at 80 m; 1

(Remember,
From fig. 3: Q
'rzi-‘\i Y 22y cosds®
2 = 6400 + 900 + 4800 % w0y
@)= 1300 + 33936
O =10,6936;
\\ <+ 7 = 1034 miles an hour,

Yolture loft to find the angle A either by the method on p. 261

%0 M I d sm4 _ sinl36°
. :agby finding d and applying sin A — 7+ OF from =

\\ ) “No_re.-—When Z and ¥ are determined from 7, 7 i3 sard fo be

resolved into its components. If the directions of g and y are at

right angles to one another, and A ig the angle between r and
&, then .

L=%cosh, and y=pgina

Draw a figure and verify these. Show also that 72 + y:=ri
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5. Relafive Velocity.

It was mentioned as early as in Chapter IV that in finding
differences we may regard the zcro as being moved to the number
from which we have to view the differcnce. Relative velocities
ate determined in the same way.

Examrie i—Two trains, A and B, are runuing in the SAINEN
direction on parallel lines. If A goes at 60 miles an hour and(B-)
at 20 mifes an hour, find the relutive velocity of A to B, and O)B
fo A, In other words, find at what velocity A appearsfo be
going to a person in B, and at what velocity B appears o be
£0INg b0 & person in A. S

(1) If the velooity of B is regarded as the zero,«fWen, considered
from this zero, the velocity of A s (0 — 20).2¢* 40 miles per
hour, and is in the same direction as that obAS ¢

7

L&
D Bs’.‘
C -8 nv::;. T A

F}’g? 1

(2) If the velocity of Ais regarded as the zero, then relative
to this zero the velocit?yof B 1s (20 — 60), i.e. —40 miles per
hour, The negativc\s@gﬁ showa that, relative to A, the veloeity
of B is zeversed. Mo & person in train A, train B appears to be
going backwardg-at- rate of 40 miles per hour.

These statoménts are borne out by experience.

_ EXAMP;J@}——TWO trains, A and B, pass a junction, A travel-
ling east &t 60 miles per hour and B north-east at 20 miles per
hour, JFd their relafive velocities,

Thézelative velocity of B, regarded from A, is found as follows:
O%0nd OB are drawn to Tepresent in magnitude and direction
W actual veloeities of the trains. .
¥ The velooity of train A is reduced to the zero by impressing

SPou it & velocity equal but opposite to that represented by OA.
The same veloeity is impressed upon B, and the resultant found.

Infig 4, 0D 45 the resultant, OC being the impressed velocity.
he resultant OD represents the velocity of B relative to A.

2 i3 seen to be correct, for when train A rcaches a Eqmt

CDrresPondjng to A in the figure, train B will bave a position

+
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corresponding to point B, and therefore a person in A must look
in the direction AR, W]?ich is parallel to _OD, to see traip B

6. Triangle of Forees or Velocities.*

The triangie OXR {fig. 2) has its sides parallel to the forcedy;

Y and 7, and may be used instead of the parallelogram, AMores

equal in magnitude but exactly opposite in dircetion’td the

resultant » would halanes it and therefore also and gregnd thus

the three forces z, ¥ and the force equal but opposite tor would
L

O

be in equilibrium,

.
Y
Fe
Lig. 2a
n 4 ™3
= 3
Fiz. 4z N\ Fig. 3a

Note carcfully tlkb the directions then run round the triangie,
that is, O to XXt R, Rto O respectively,
It follows nlse that any one force reversed is the resultant of

the other o, i
Figs. 2a), 3(a}, and 4(a) show the triangles corresponding to
and

figs. \2,&; 4.

sach plane, from g point on the line of intersection of the planes,
and at right angles to it (see p. 21)).
In the figure, AD is the line of intersection, and if Ab and AB

* Attributed o Btevinus, a.p, 1548-1620 (ninetecn centuries after
istatle!),
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arc ab 7ight angles to AD, 2 BAb is the angle between the planes,
1f Bb and Ce are drawn at right angies to the plane of the page,
then AbeD) is called the projection of ABCD on the plane of the

page.
When ABCD is a rectangle, AbcD also is a rectangle.
Let angle BA} be denoted by A; then Ab = AB cosA.,

Arew of AbcD = AD x Ab
= AD x ABcosA O\
= area of ABCI} X cosA, (NS

N

Le. the area of the projection of the area ABCD on &he, plane
of the page is equal to the area of ABCD multiplied }iy'the cosine
of the angle hetween the planes. 2\
AbeD
It follows also that area of ABCD = m—\ \
This relation is quite general. Tt is true’ for plane areas of all
shapes, AN\

o] N
&
B N
i .H | aiah Ll
' ;
i N |
/4 ]
o W ;
]
Y |
A - ’é 0 g R+
Fig. s Fig. &

\¥/
8. The P«Q}h'of a Projectile.
The pathior trajectory of a projectile is approximately a para-
bola, AMd"May be taken as auch for theoretical considerations,
L6$he point of projection is the origin, then the equation of the
.Pﬁﬂi 18 of the form '
Y=art+br (sincecis®. . . . . @@

oy
\

Vv Bee fig. 6.
The coefficicnt of 22 is of course negative. )

H iy the greatest altitude attained, and R the horizontal
fange of the projectile, we know from Chapter XX, 2, that

b _

R = —E and H = i
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From these relations jt réad.ily follows that
b= 7 and g = -~

Hence, in terms of the horizontal range and the maximu.m\
aititude, the equation to the path is \

__4H | 4H O
Yy = -_I]:TZ'L‘E -)- _E L. L ::.\’ S “]I)

Now H and R depend upon the angle of elovabimi‘?:gf the gun
and on the velocity of prejection. K7,

Lot ¥V = the velocity of projection n, say,.Jest per second,
aud € = the angle of elevation of the gun fahere correctly, the
 quadrant angle). Then, resolving the Q]ocit-y, vertically and
borizontally (see Note, section 4, p- 262}

Vertical velocity = V sine, and I{Oi@gs\()ntal velocity = V coae.

I the vertical velocity is Suijj.f-,'{:}f:to an acceleration of —g
during ascent and ¢ during desgent (g is &pproximately 32 f. per
sec. per sec.), then the t-ime,j:}é%fach the greatest altitude is Vsine
and the time of flight deybls vthis, namely v S'i—n'?o. !

Now the horizony%?";}e\locity 18 constant, a.n'g therefore:

The horizontail Nﬁge, B = horizontal velacity X time

N =V cose x 2¥ siue
.O \ n: 2
§»\\ _ 2ve gine cose,
\O 9
.\ 2V2 Y
AHence R~ o Snecose. Lo (i)
AN
.n\’ “; .
\/  Again, from Ex. XXT7 {a), 1,
H = fg2;
and since = Zm—n-?,
g
- ]
therefore H - V:rinte . ()

29'—' - - . .
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Equation (ii) now becomes

—4V? sim%e 4V2 5inZe

Ty . —5;

¥ = o coded 2V3sine cose”
g g

— ___._g_._a:ﬂ _l_.@

2Vecoa?e™ ' gome’”? '.\:\
. " sine : N\
or, sice - o = seofe and cose - tene, R \.

y= “%@1325_8028 txtane® L. . (v)

By means of this cquation, the altitude ) ab ansr point of the
flight can be determined, : N

R
Exmrezse XXTED(s)

1. From the tables, find the cos{ébéﬁt, secant and cotangent of;
20°, 50°, 75°, 85°. . :

2. Besolve a force of 100 1B in directions malking 60° and 30°
on different sides of the direction of the force.

3. By means of 2 rope, 4 horse cxerts a force of 200 Ib. upon a
railway trucBNIf the rope makes an angle of 35° with the
tails, caleglate the force urging the truck along the rails
When batk'Tepe and rails are horizontal.

4. A brai is.going E. at the rate of 80 ft. per sec. A rifle, hold
3?"(2}“ angles to the train, is discharged by a passenger,
D't is found that the bullet follows a horizontal coutse
. "B °N.of E. Find the veloeity of the bullet.
BT the ares ABCD (fig. 5) is 20 sq. in., find the area of its pro-
"\ lJection on a plane making 50° with it.

V' 8. A cplinder, 10 in. diameter, is cut by a plane making 35° with
1ty axis. Caleglate the area of the section. Determine also
the azes of the section, and check your first resclt by

caleulating the ares from the lengths of the axes.

(Area = 7 times the product of the semi-axes.)

* A simplar proof of this equation is given in Chapter XXVEL.
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7. Find the resultant of the following velocities
(1) 75 m.p.h, N. and 30 m.p.h, N,
{i1) 75 m.p.h. N. and 30 m.p.h. 8.
(ii} 75 m.p.h. N. and 30 m.p.h. 60° clockwise from N,
(iv} 75 'm.p.h. 30° clockwige from N. and 30 m.p.h. 150°
elockwise from N, ~

8. Find the horizontal range of a gun baving a muzsle velociby
of 2000 £t. per second, the guadrant angle being 30% N
What altitude will the projectile attain? S\

8. At what angie must a gun he set to hit an aeroglé,pg 600G ft,
high at a horizontal distance of 1000 YA\ the muzzle
velocity being 2000 ft. per second ? (¢

10. An aviator is flying at 200 mileg per heng\in a direction 25°
N.of B, and » west wind ig blowifg™M0 miles per hour.
- What is the direction of the wind'¥elative to the aviator?

S

11. An aeroplane is flying horizontallynas 200 m.p.h. at & height
of 10,000 ft. Find at what disfance from a ground target
& bomb should he released ta“score & hit, (¥irst find the
time to fall 10,000 ft, wergically.)

12, Assuming_ the trajectors™ef a projectile to he a parabola,

determine its equatioh when the maximum altitude is
2 miles and the Worizonta) Tenge 12 mifes,

13. Determine the’qu}a.tion to the parabolic trajectory which
bas a makifgim altitude of 12,000 f&. ang & horizontal
range of 1%%(30 it,

14, Arrange gaitation (V) {p. 267) in a convenient form for calou-
lating, V. _
Dslenlate V when o — 15°, y = 1 mile, and 2z ~ 4 miles.
{Under what conditions wounld V he imaginary?
15, {82 is the full time of flight of g projectile, show that

VE = fg@ + Rej2,

AN

o N

\J 9. The Trigonometrieal Functions of Angles of any Magnitude.

Bo far the trigonometriga] ratios of angles between 0° and 90°
only have heen considered. Tt ig now necessary to consider angles
of any magnitude, )

Tmagine a straight line OP {fig. 7) to rotate about the pOlE_kt_O
in, 8ay, the counter-clockwige direction. Let 0OX be the initial
direction of QP.
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Sine Graph.

Yg 3:' i [A €
R i 4 i
. AN
x} / .
0Q Jo"as o 180 70 rao"
- o1 2 AN
£y & e
& ’\,,I
Cosine| Graph. (“}s
/ P I 2 .:." i
o qQ Jjo e 1807 AT 80"
L ’ ‘\
1 N\
Tangent, g}’fa;)hs
L o AN
tan x \ [
]
v dud 2
N o ap° 180" 270° 360"
9.\
O\Y
=\ -
A )
o\ ¥4 e 1 =2 ! J
. i

Fig. 7
When the ling b tH 2, i
thl‘ﬁmgh the angleaSX rg;f-}hed the position OP ghown, it has rotated
taw PQ at right angles to OX; then
PQ 0Q

sin 2 XOP = oP and cos 2 XO0P = oP"
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If PR iz drawn a4 right angles to 0Y, then PQ = QR and

OR
oP°
Now, OR is the Projection of the rotating line OP on the ver-,

fical line OY, and” OQ the projection of OP an the horizonall,
line OX,

A more gencral definition of each ratio is as follows:

sin £ X0P =

N
(\A

ine £ XOP — Projection of OP on the VBI‘tiC?f,} ety

Rofating fine 0P
jecti fzonital axi
cosine 2 XOP — Projection of OP on the horizontal axis

Rotating line O ’
tangent / XOP — _Projection of OP on the vertical axis

Prajection of OP o{the horizontal axis”

These definitions can be applied to\grgles greater than 90°,

The projections are positive of medsured in the divection 0OX
or OY, and negative if in the direstigh OX' or QY.

Note carefully the Tollowing %

(1) When OP has the direetion 0X, the length of the pro-
jeetion on the vertical #xis 15 0, and that on the horizontal i
equal to the length omeP.

. (\J opP
Hence, sin@® N’s coal® = op = 1 and fan0°® =09,

(2) When OB“has rotated through 90° and has therefore the

direction 0¥y the length of the Projection on the vertical axis is
equal to titelength of OP, and that on the horizontal axis is 0.

ng@}“gin 90°=1, ¢0890° =0 and tan90® = 3=

{3)\When OP i3 in the second quadrant, i.e. when the angle

XOP is obtuse, the Projection of OP on the horizontal is negative.

ke cosine and tangent of angles between 90° and 1807 are there-
\/fore negative.

(4) When OP is in the third quadrant, hoth projections 818
aegative. The sine and cosine of angles between 180° and 970
aze therefore negative.

{8) When OP is in the fourth quadrant, the Projection on the
vertical is negative,

The sine ang tangent of angles between 270° and 360° are
therefore negative,
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The graphs of the sine, cosine and tangent of angles from 0°
to 360° arc shown in fig. 7. The angle is represented on the axis
of z and the value of the function on the axis of y. :

BExamine the graph of tanz in the neighbourhood of 90° and
of 270°. Observe that for an angle slightly less than 90° tan x is
positive and numerically large, and for an angle slightly greater
then 90°, tan 2 is negative and numerically large.

It will be seen that in passing through 90° and 270°, tanzx
changos sigm from positive to negative, and that for these va,lg:e'&
of x, tanz Is infinite. a\

N

10. From fig. 7. the following relations can be vep'{ﬁ‘e&:

gin (180° — x) = sinzx, sin (180° -+ )&= s,
cos(180° — x) = —cosx, cos (180° < %)= —eosx.
tan (180° — x) = —tanx, tan (189“’\\+: x) = tanax.

By mecans of slight additions to ﬁg;’%} the following are also

eastly proved: O
sin (90° + £ cosx,
eos (90° - ) = —sinzx,
tan (90°%h %) = —eotx.

It ia seen also that:&‘"
5in(90% -+ %) = cosx,

.
cos(90° > ) = sinx, P
taj{(ﬁfm — x) = cofx, Y N1 R A

11..17'\11\11}:ti0ns of Negafive Angles. :
E%«‘S shows angles +A and —A ~@ 0—X
Intgsired from the direetion OX.
oou It ds evident from the figure that
o\ ) the projoction of OP on the vertical
./ When in its final position after describ-
g the angle —A is opposite in sign
to the corresponding projection when
m the final position after describing the Fig. 8
angle 4. Thus, in the given figure,
N is positive and OM negative. .
On the other hand, the projections on the horizontal are ex-
actly alike. '

S EEEEEES /oA
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sin({—A) = —sinA,
cos(—A) = cosA,
fan(—-A) = —tanA,

12. The relation gin A+B
readily proved as follows, when
1807,

Hence

= 9104 cosB + cos A sinR Is

A and B are together less thaps,
Let A and B be angles of & triangle ABC iz &), O\
Then \

O
C=180°— (A + B) and sinC = sin{180° — (A + B)} =sinlA - B).
' 4 ’0‘

Now, €= @cosB + boogd, (see Chappe{:SIXI} . (i
and since . L _"b_“ =L \‘\
sind  snB T gn "
AN Fizo
Hence, substitut'{gj},heae values in equation (i), we have:
gsnC € sinB
:n.’:aaél = coaR + SoA cos A,
from which :;\’} 8inC = ginA cosB + sinBoosA |, . | (i)
nd ¢ Gin (A + B) ~ sinA cogp + sinBoosA. . . . (i)

Bi\a ilar reagoning, but beginning with

8" eosO = cos {180 — (4 + B)} = —cos(4 + B),

“\'then €o3{A + B) = o050, (i¥)
" and since @ ="4cosC + o cosh,
we have, —gog() = gcosB - %
_ &inC B ain A
~sing - 98B ~ sin B
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From (ii) .
_ [sinAcosB + cosAsinB)cosB —sind
sin B
sinA co2’B + cosA cosBsinB — sinA
) gin B
_ sinA(l — ¢in?B) + cosA coeBsinB — sinA
N sinB o
e
= —ginA sinB -+ coaA eoaB, NS ©
s from {iv) .

cos(A + B) = cosA cosB — sisAsinBL O . (%),

Note—The relation (v) ean be deduced from (iﬁ) i)y changing
Ainto 90° + A in (iii), and using the formulfa{\ )

sin(90° + &} = eosx, cos(30° + ) =..&s')']13: {section 9).
gin(A + BY()'
cos(A +B)

_ si_nA;édgtB + cos A sinB
cosAcosB — sind sinB'

Again, tan{A + B) =

({uinAcosB | cosA sin B

Dividing ahove W) cosd cosB ' cosA cosB
below by cosA cosaﬁ\\ “cosAcosB  mnAsinB
) cosA cosB  cosAcosB

AS
» _ famA ftanB (i
[ RA T B) = e R tanE )
13«'%&9 three veryimportant formula for sin (A + B), cos (A+B),
tan{A*+ B) given in the last section, were only proved for the
(€ when A and B are positive angles less than 180°. In point
)0 fact, they are true for all angles whatever, positive or negative,
¥ 88 may easly be verified for particular values of A and B, with

the help of the relations of sections 9 and 10. .
Now change B into —B in each of the three formuls, using

Sectlon 11, Thuys:

sin{A — B) ~ sinA cos{—B) -+ cosA sin{—B)

o sin(A — B) = sinA cosB — cosAsinB. . . (vi)

N
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Similarly,  cos(A - B) = cosA cosB + sinA sin B, . . (viiD
tand — tanB

(A = B) = I hnA ()
The six relations: -~
sin{A  B) = ginA cosB L - cosA sinR, A L
. ©0s(A -+ B) > cosA eosB F sinA sinB, \'x“\
tanA + tanB M
ALR .
A L B - s N\
are very 1mp0rtant and should be memorized, ,\:
XN\

It B = A, then \ _
sin2A = 2sinAcosd, . . . N AT (x)
0524 = cos?A — sinZA = 9 cof ALY =1 - 28?4,

DAY oo (xD)
2 tan A « \J .
tanZ4 = I~ famzd’ - R {xii)

N

*”

HA= 2 then from (,oq?.A (,x1)

CORE = 2008‘%' —iI=1-232 sin2:§c, v (xiid)

from which

cosg SO J cos_x and gin? 5 - \/ L_;ﬂ@:,
x:\, ) . (ziv and xv)
and \* ,fa.n%? % ; E%:g e e e L (=)
,&lso from (x) and (xiii)
”\ w4 sing S

A4 t‘a‘ﬂ2 1+ cosg’

T A+B=2 and A~RB= Y, then A = Yz +y and
B=1Hz-y.
By addmg and subtracting equations (iii} and (vii),
sl (A -+ B) + gin(A — B) = 2 sinA cos T,
gin{A + B) - sin(a — B) = 2 cosA sinB.
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Substituting the new values of A and B,
sing + siny = 2 sind{x + ) cosi(z - ¥ . (=viidd)
sinz ~ siny = 2 cos He +y)sindx — gy . (xixz)

Similarly from equations (v} and (wvii),
CO8T + cosy = Beosl{x + y) COSHT —y), . . (xx)
COSE = cosy = —2uind(@ + y)sind{x — ). . (xxi)y,
R
The student should practise deducing these relations, beginning
with sin(A + B) and eos(A + B} _ \ >

Exercise XXIII (o)

N
1. Examine the sine graph and trace the ﬁ?ﬁhge in the sine of
an angle as the angle increases bypgay; 15° from 0° to 360°.

2. Repeat Fxercise 1 with the cosing ‘ard tangent graphs.
3. Bxamine the graphs of Exercisesi] and 2, and make a list of
all tho equalities you cansfyg.
4. Write down the sin, cog And tan of the foliowing angles:
120°, 135° 156% 180°, 210°, 225°,
240°, 270°o\i,300°, 315°,  330°, 360°,
9. By how many d%rees is the cosine curve in advance of the
sine curved\.,
6. Trace th'etgr\:l.ph of 2giny, and on the same axes, the graph

of c-osgf} Then add the ordinates of the two graphs together
and obtain another curve. If is the graph of 2 sinx + cosz.

7, Trf,‘a’c\e the graph of 2 sinz — cosz.
8=Constract the graph of sin®z, i.e. the square of the sine of 2.

. 9. Draw the graph of log,, sinz.

10. Procuxe 5 #hin pasteboard tube, and cut it across its axis
ab an angle, slit one part along its length, open it out flat,
Place it flat on squared paper, and draw a pencil line on
the paper along the curved edge of the open tube. What
kind of 4 curve does it appear to be? Verify by measure-
ments.
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Exgrcrse XXITI (p)

I. Taking A = 45° and B = 30°, find the trig. ratios of 75° and
15° from relations (i), {v to ix).

2. Caleculate sin, cos and #an 221°. A\
3. From the values of the trigonometrical ratios of 60° and 45°
find those of 105° N\
4. For what value of a will X QO
{1) sin2z be a maximum? (ii) sin2qr=\0?
{iii) cos2a be a maximum ¢ (iv) cos@m= 01
AN AL

5. IfsinA = z, find sin24, cos2A, sin oL aﬁd~’cos§mterms of &
6. Express ¢in®2zx in terms of sinz. P NY
7. Find sin A in terms of sin}A. N\
8. Show that O

(cosA + sin AR +- sin2A,
3. Show that oD

LA . =
{1)" BN = 2 5l g €05 o5

i) 1 + cosx =2 cosz:g,
N\
and t-hat}nerefore
“ sine T
p. } P {Hl) m: tan Q'
10 Drethe graphs of (i) cosec, (5 seo, (i) cob, from & = 0
Ndo 7 = 360,

1NIn fig. 7 (p. 269), the diagram of the rotating radins is usually
% called the clock diagram of the graph, Took
& ol In Questions 6 and 7, Ex. XXTIT (c), show the clo

A4 diagram of each graph, including the resultaut graph-

12. On the same axes, plot the curves sinx and sin(z + 80° ot
On the same clock diagram, draw pointers to Tepres®
the rotating radii. . ok
Determine the resultang curve, and insert in the @ i
diagram the pointer corresponding fo this cwrve. o
the free end of this pointer to the frec ends of the 0
pointers, and see what figure is obtaincd (fig. 10).
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13. Plot the graphs of sin27 and sinz on the same axes.
Draw alsa the clock diagram as in the previous guestion.
Determine the resultant graph, and insert in the clock
diagram the corresponding pointer,

Fig. 10 ¢ ’:\\“
2. W
"\

14, Bimplify the following: e _

(i) sm{A + B) + sin{A — B).  Hi)’sin(A + B) ~ sin(A — B).
(i) cos (A + B} + cos{A ~ B)._o\(iv) cos(A + B} — cos(4 — B).
(v) tan(A + B) + tan(A — B)A" (vi) tan{A + B) — tan(A — B).
15. If the length of eaghnof a train of waves is 3421 m. and the

velociby is 30%&@.’1&0]1 metres per second, find the number
of cycles par sécond. Similarly, check other wave-lengths
and cycles ‘given in the Radio Times.

<

18. (i) Bcg;nﬁiﬁg' with the relation
\:\ a® = b + ¢ — 2be cosA
O .
+3 20d applying relations (xiv) and (zv) (p. 274) and factorizing
NN asin 2, p. 232, show that

"N

) . A (s =D)s —¢) A s(s — a)
e R L Ry o
s_ [TEH6=0
and t,a,n-é = ,J‘“—ém‘)'—‘

(i) Find the angles of the triangle whose sides are 15,
12! and 9 om,
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CHAPTER XXIV
SPHERICAL TRIGONOMETRY

In this chapter the SJundamental relations of spherical trigonometriy,
80 essentiol 16 soilor and guiator REVIGALOTS, are established, omd
their simpler applications considere . NS ¢

1. The Spherical Triangle. &N

The plane sections of 4 sphere are circles. The Jargest circles
are those made by sections through the centzgs\NThey have the
fame centre and rading as the sphere andNare called Grmar
Cirorms. The eirelos of longitude and the\equatorial circle of
the earth approximate to great cireles., {The circles of latitude,
exeept the equator, on the other hand, are not great circles.
It is important to uavigators to beNable to calenlate the great
circle distance hetween two places.on’the earth’s surface, thaf is,
to find the length of the great pitele arc between them.

The sides of ¢ spherical triendle are arcs of great civeles. This fact
should be borne in mind threughout, the following considerations,

In fig. 1, ABC represents such a triangle.

The lengths of the arcs are @, &, ¢, The angles subtended at the
centre O hy the ares BC, CA, AB are proportions! to these arcs,
since arc BC = radius of sphere X number of radisns in 4.
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In the frigonometrical formulz, cosa always means the cosine
of the angle BOC, and so on. If the sphere is of unit radius the
arc and the angle ars the same,

If tangents AP and AQ are drawn at A to ares AC and AB
respectively, the angle between these tangents is the angle be-
fween the ares and also between the planes of the great circles
of which AC and AB are ares;

ie. 2PAQ iz the angle A of spherical triangle ARC, N

€ N\
It should be rcalized that the tangents are both at right anelss
to the radius OA, but that the right angles are in different plames,
£OAP being in plane OAC and £0AQ in plane OAB. {Similar
conditions hold for angles B and C. fa,

(&
®. Important relations between the sides and aﬂgles"éf\a spherical
triangle can be established as Joliows:
In fig. 2% deawn in perspective, ABC is #yspherical triangle,
0 the centre of the gphere, of unit radius. BD%s 1 to plane AOC,

A

ad Fig. 2

'QE\’is L1 to OA, therefore OEA is | both to DE and DB,
3td therefore to the plane BED. Hence BE is L to QA, and
LBED = /A, :

Triangles BDE and BEO are right-angled, the right angles
being at D and T respectively.

Similarly, DF is L to 0C, £BFD = £C, and ABDF and
ABFO are right-angled, having right angles at D and F,

* The reader will find a wire and paper model of fig. 2 usefal,
(G2a) 1
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EG is drawn 1 to QOC and therefore || to DN, and DK i 1 1o
LG and therefore il to OC, and KGFD is a rectangle,

Bince BG iz 1 to 00, and ED is ! 4o 04, L DEG or DEE =
ZAOC = p,

From ABFO, OF = cos3g, and FB = ging,

From ABEO, OF = cos¢, and BB = sine,
0 Oy
From_A_.OGE, O_]C; = cosh, ', OG = eosd cose, N\ \
1) ) _ A\
EG)E‘ = aind, ' GE = sink COSCLN,
ED R\
From ABDE, AR = o84, . ED = sineleovd.
a\,/
D i
From ABDF, ]lj;TS = cos(, " F])Qj\:sina eosC,
KD | NV -
From AEKD o sink, S ED= ED sind.
EKE 8\ |
E% = cosd, . EK = ED cosh.
Now sineo A
(OF = 0G + GF
Y =06+ KD
C = 0G + ED sinb,
. 0082’ = cos b eogc + sind sinc cosA. . . . . (Ig)
Simﬂagbé:}osb ~ COSC cosa +sinc sing eosB, . . . . (1)
;\\“' C0S€ = cosacosd + sina sind eosC. . . . . {Ig

,,\:ﬁy means of (Ia), if two sides (b and ¢) and the included angle
\\A) are known, the other sde (t2) can be caleulated. The other
/ angles might then be found from (Ib) and (l¢).

3. The distance between tipo places on the earth’s surface.

This can be caleulated from relations (I).

Referring to fig, 3, if 4 ang C represent the two places and B
one of the earth’s poles, then ¢ is the polar distance of A {which
in degrees is 90° — [atitude of A), a is the polar distance of C, .
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and B is the difierence in the longitude of A and C. The great
circle distance hetween A and C is b, and by relation (Ib)

cosb = cose cosa + sine sing cosB.

Rig. 3 AL
7

Exanrie—Caleulate the distance hefween New York (41° N.
T4° W.) and Liverpool (533" N. 3° WAV
Here ¢ = 90 — 41 = 49°, & = 90, 534 = 3617,

B=74-3-71°%
cosh —~ cose cosa + singing cosB
= cos49° . cos565° P sind9° . sin363° . cosT1°
6561 % SQSQ o -TH4T X -BME K -3256
B34 4 462
= 6736,
From tables,, b= 47° 40,

Now one nifnitte of arc of a great circle of the earth is one sea
mile, i.e, 1¥%"60 sea miles {or 69 land miles approx.). The dis-
tance %ﬁéﬂ New York and Liverpool is therefore 47° x 60 +
40 =¢ sea miles, or about 3290 land miles. AJ:'Lgles Aand C
cannbe caleulated from (Iu) and (Ic), but the relation (II) found

:in{:th@ next section gives a shorter method.

i

1

" 4. Relations between the sines of the Angles and sines of the Sides.
Refer again to fig. 2.

' BD | o
From ABDE, 0 gind, . BD = sinc sinA,

and from A BDP, %g = &inC, .. BD = sing sinC,
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and -, sing sinC = gine sin A
sing sing
or $ind ~ ¥n0O
.. sing  sinh
Similarly, TRy
.. sine  sind  gine
giving SA T SNE T sme v - 9D

N\ ¢
Returning to the example (p, 281), tho angles A and/C can
uow be calealated by (II), since N

imA =B . sin7I° X sin3gld)
AT np sna = sind7° 497" "

Work this out by logs and verify that A,\%}_B" 33'. This means
that for great circle sailing, a ship Wou_@f’ igave New York in the
direction 49° 33" E. of N. Similarly, wéw v that C iz T4° 54’

Again, since D = GK = GE ~BK - g - gp cosb,

*. sing cos(l = sinb,qé's;?“-— cosh sing cos A, (III}

Multiplying equation (II.Ij'.‘b'y sind and using equation (1D,

8ing sind cosC  sind eosc sinA  cosh sine cosA sinA
-

sing sinC ~ A Wnpend gine sin A
" SnABOLC = sind cote — cosh cosh, (IVa)
sidBreot A — sinc cote — cosc cosB. . . . (&)
MITC cotB = sing coth — cosg cosC. . . . (o)
»i;'\"sin(} 00bA = sind cotn — cosh coxC. . . . (d)
\ﬂ' sinA cotB = sige coth — cosg cosA. . . . (e
. O 8in B cotC = sing cobe — cosacosB. . ., (f)

() By means of (IV), if two sides (b and ¢) and the included angle
) {A) are known, another angle (C) can be calonlated: or if two
angles (A and C) and the cennecting side (b} are known, another
side (c) can be caloulated,
It relation (IV)is arranged in the form cosh cosA — sind cate
—8ind cotl, the following rule wil] help you to remember it.

From the figure write down fors elements in order, for example,
CbAc,
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Call b and A the inner elements and € and ¢ the outer elements;
then the rule is:
Product of cosines of inners = sin inner side . cot oder side

— sin inner angle . cot outer angle,

e.g. coab cosA == sinb cote — sinA cotC,

5. The Right-angled Spherical Triangle. AN
When the angle C is a vight angle, the relations reduce to-the™
following. W W

From (Ic), cose = cosa cosh, (since cosBO® = Q); '..,‘”;": {i)
from (IT), sing = sin¢ sind, (since sin90° =P . (i)

from (I11), cos A = E_D_G_O_Ef, (gince cos 90° = 0)’;
. sin¢ cosb N

sinB cosa cos b’ i:ro‘rg(ﬂ) and (i);

<L cosh = sinC  cosh
S cosA = sinB cosa, (siﬁpe”éinc =1} . . . (i)
gink coge vtapd .
Al = e —— v e e s
50, cos A sine cosf tane’ (iv)
ot B X
¥r cotb A
om (IVe) woth sjlg;‘a:\
or tanB=\§n~b. P A7
Y

These shoul&'i{;ef verified and the corresponding relations written
down whendand B and also ¢ and b are interchanged, C still
Temaming-glright angle; e.g, (ili) becomes cosB = sinA cosb.

Nate\ formuie

\ ging tanb tana (¥i)

OF sinA e —— = _—  fandA = -
N® A sine’ cos A tane’ sind’

'\‘ w4
A0d compare them with the eorresponding formule for s plane
friangle.

Exgrecer XXIV (4) .

L. What docs equation I become when A is (i) 90°, (i) 180°%
2. Find side ¢ when (i} A = 90°, and b = ¢ = 90°; (i) & = 45°,
and b =~ ¢ = 90°,
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3. Calculate the angles of the spherical triangle of which ¢ = 361°,
b= 47° 40, ¢ = 49°,

4. Find the great circle distance between two places on the line
of latitude 45° N, and differing by 45° in’ longitude, and
compare it with the are of the circle of lstifude hetween
the two places. Q

- Repeat Exercise 4 for a difference of 90° in Iongitude, A
- Find the great cirele distance between the following plabes?
{1) New York and Bristol (513° N., 22° W.). g
(i) New York and Cape Town (34° §.. 18° 25 B3\
(iif) Cape Town and Wellington (41° 8., 1753 8.
{iv) Ban Francisco (38° N, 122° W) and \-’V&)ﬁ.ngton.
(Remember that the cosine of anglesJahe second quad-
rant is negative.) \/

70\
7. Referring to the example, p. 281, make éslculations of b and A
for varicas differcnces in longltude (say 15° along the
course, and plot the resulis against longitude,

Note~—Tn calculating the threelangles of a spherical triangle
1t would be noticed that unlikelthe angles of a plane triangle the
sum of the angles of 4 spharieal triangle is greater than two right
angles. Hach angle mag.have a valne betwoen O and 180° A
triangle each of whose @hgles is nearly two right angles is very
nearly the hemisphede)” The sum of the angles of a spherical
triangle lies between\two and six right angles, The sum of the
sides 13 less thamhthe cireumference of the sphere, i.c. 360°

= on

6. Relatioh\Bétween the Three Angles and One Side.

The re{gﬁons for the right-angled triangle can be used to
establish.an important relation hotween all the angles and one
side &f\the general triangle.

Jnithe AABC let great circle arc p meet AC at right angles

L 88T Namc the parts of ZB, X and ¥, and ¢'C, i ag in fig. 4.
O “Then from right-angled A BC'C by relation (i} (p. 283),

COSG == COg cosy

cos Y

o
cosY

. GO = Gos ;nﬁ

and by relation (iii), cosYy ==

or cosY cosp = sin( cosq.
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eosC . .
Also by (D), cosp == ﬁ, from which, sm¥ cosp = cosC.
From right-angled A ACB, by (i),

cosA = cosp sinX = cosp sin(B — Y)
= 5inB cesY cosp — cosB sinY coap.

*, substituting, cos A = sinB sinC cosa — cosB cosC, (Va) \

Bimilarly, coaB = sinC sinA cosh — cosC cosA, . \ (b)\
cosC = sinA sinB cose — cosA eosB. . W{e)

By relations (V), the sides can be calculated if al}'.‘éhe."angies
are known; also, if two angles and the connecting gide‘are krrown,
the third angle can be caleulated, . &

B

Fig. ¢4

A
S
Compare relatiglks\(f") and (I) and verify that if ¢ iz changed

into 5 — A, A ibts 7 — 0, sand similarly for the other sides and
angles, equationi(la) gives cquation (Va); thus:

cos(m —_é')\“
= Qg(r — B) cos{r — C) + sin{mr — B) sin(x — 0} cos(m — a);
i-e..}.:—-cosA '
,\:“\;.'““ (—cosB){—cos() + sinB sinC{—cosa)-
\ )5 cosA
= sinB #inC cosa — cosB cosC.

This will help you to transform (I) into (V). _
Note.—A triangle can be drawn whose sides and angles are,
Tespectively, tho supplements of the angles and sides of another
triengle. Wither triangle is called the Supplemenial or Polor

triangle of the other.
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Exereise XXIV {m)

1. Use relation (V) to find A when B = 361°, O =513, a,ndl
@ = 57% and a when A — 104°, B = S63°, and Q = 512°,

2. Find A when ¢ = 55° 6, and @ = 124° and B hag the fo}_low—~\
ing values: (i) 92° 257 3 (i} 90°; (i) 757, {iv) 60°,

3. Caleulate b for the valyes of C, @, and B in Kx. 2. .\:\

4. Show by relations (i) and (i) (p. 283), € being right ehgle,
that cosc = cotA cotB. \ o

5. The following are the elements of #wo sphe-rig{;l Ei:ia,ugles;
check the values by using each of the relationy (T) to (V).

(i) A = 80°, B =110°, G=\ja0°
a = 56° 5, b=126"58,  ¢oyisec oy,
and 'x;.\

(i) @ = 57°, b=31° WO o= aope
A = 104°, B=36°, O -y

6. Find the great circle distancarbetween the following places:
Glasgow (56°N., 42°W ) and-Kow York,
London (513° N. 0°) and-8alcutta (22° 347 N., 88° 24’ L),
London and AN Moscow (55° 45" N, 37° 36 E),
Caleutts and i*,\ Port Darwin (12° 26 8., 130° 50° B.),
London and \ - Port Darwin,
Honolulu (21220" N, 157° 51’ W.) and Yokchama (35° N.,
139° 30y, -
and, ths great circle direction from the first namoed and
atlz();}he direction of arrival,
7. Tﬂ.l{b;tﬁe greab cirele course from New York to Cape Town
W\hand caleulate by (V) the direction at various longitudes
s along the course, say ab intervals of 15° Find also the
A\ distance from New York and Cape Town for theso longi-
\/ tudes. Plot the resnlts against longitude and so construct
& graph like that shown in fig. 5. See also fig. 6,
8. In a mannor similar to that of Ex. 7, make out great circle air
courses from
London to Caleutss (22° 34’ N, 88° 24’ E.).
Caleutta to Sydney (33° 52/ 8., 151° 12" B.).
London to Cairo (30° 2" ¥, 31° 15/ E).
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CHAPTER XXV

FUNCTIONAL NOTATION, VARIATION, EXPANSION 2\
' OF BINOMIALS, APPROXIMATTIONS )
oA\

1. Functional Notation, A\

A special notation is used to denote functions, The” signs
most gencrally used are, f(z), F{x) and $(x}, the iettar in the
brackets indicating the variable. "4,

Thus, fiz) = 2* — 3z + 2 means that the expression 72 — 31 + 2
Is & function of z. Similatly, f{z) = az? Fd - ¢ mesns that
the expression has to be regarded as s functieh of & only. That
Is, 2 is the only symbol which changes in #alte; the others being
therefore constants. 2\ N

The value of & function when définite value, say 3, is given
to the variable is sometimey referred™to as f(3).

Thus, iff(m)=ﬁ—33;+2,,ﬁen f3)=9—-9+32=2

N <
N3

Gha_.nge of Variable, a\

Examrre.—Represent @) =22 — 8z + 2 as & function of 3,
given that 5 = z -- 1, £
Sinee z = ¢ + LESz— 1,
Substitute this ¥alue of 2 in the given cxpression; then
flg) = (z — 19 — 8(z — 1} 4- 2,
WO te. flizy =22 — 5z + 8.

Compardsthis with the change in the position of the axis of ¥

(- 20705
o\ Exsrorse XXV (a)

~D I f@) = 22 — 32 + 5, fing £(2), £(0) and fF(~3).
N2 I fa) =220 — g+ 1, represent the expression as a function
of 2 when 2 = (g — 1).
8. I flw) = o + )2 — 1) — (z + 1), find i) when y =
{z — I}, and scive the equation ffy) = 3,

¢ If fiz) = H{H, find f(—2), and statc for what

values of the variable I, f{z) = 0,
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5. If 4 is a function of v such that

R,
=T
and v is a function of £ such that
v =u + af,
express d us a function of ¢,
:)3'.' '!‘ -I]_ . . . N
6, Fxpress &;ﬁﬁ’fi—z as the sum of two simple fraf:!;iona}
functions of x (sce Exercise X V. (¥), No. 31). « \
&x ~ 17 , N
7. Express B = Fr =g the difference betweenytwo ‘simple
il &
fractional functions of x. "‘\

8. If f() = sIn 2z cosz, ﬁndﬁ%go%- N

9. It flz) = 3tan(z + 15°), find F(0°)and f(30°).

2. Variation, N
_ Generally, one quantity is saidito vary with another when one
s 50 dependent upon the othér that it changes when a change is
made in the other. The lawdefining the change may be simple
or may be complex. \

A W

ExamprEs. &™

(1) The perimater of a square depends on the length of the side
of the squaresy ™

(2) The droa of a circle depends on the length of the radius,
(3 T%:}éight of a liguid depends upon the volume of the
llquid\'thc temperature being constant.

(#), The weight of a bag of sovereigns depends upon the number

. E'I \Sovereigns the bag contains. o
N/ (5) The amount of interest due dopends upon the principal

nvested, the time, and the rate paid. ) )

As 0 how these quantities vary is a matter for consideration.
Ab prosent we need remark only that one quantity is a function
of the other,

(1) Dircet Variation, One quantity is said to vary directly as
another when one is so dependent upon the other that the ratio
of any two values of one guautity is equal to the ratio of the:
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corresponding values of the other. Or if when one is changed,
the other is changed in the sare ratio.
E.g. the weight of water varics ag the volume taken,
Thus: 10 c. ft. weigh 625 Ih,,
6 ¢. ft. weigh 575 Ib,,
2 c. ft. weigh 125 Ib,

The ratio L8 will be found equal to the ratio SEE, O\
also § will be fonnd equal to the ratio 223, O

and similarly for other corresponding valucs, A\

It V represents the volume of water and W the weigh# of this
volume, then W varies as V. The 81gN o¢ stands fof ®varies as ”,
and thus we write: V

Weoc V.

Now, returning to our example, if we di.'wﬁg each weight by the
corresponding volume, we obtain the ?a};ne result in each case,
thus; o\

S =625, 2 o 626,125 — 254

Looking at the reverse operation;we see that to get tho numeri-
eal value of the weight from thétiof the volume, we must multiply
the volume by 6245, N\

IB\W = 62.5V.

The number 62-5 ,is”e\a.lled the constant, and is obtained by
dividing one value ‘ef\the quantity by the corresponding value of
the other, \,

Hence, whenwe meet 5 stateraent like

\X

K WocV,
we can ghvdnice write it in the form of an equation, thus:
O W = KV,

whére K is & constant which con be obtained by dividing a value

D W by the corresponding value of V. '

\\ ) For a more general proof, suppose V,, V,, V,, etc., reprosent
values of one quantity, and W, W,, W,, ete., represent corre-
ponding values of the other; then, since W varies as LA

vV, W, Vo, W, vV, W,

(1] Vz - Wg’ . (2) Va - T‘Vg's (3) V‘s o Wrs

, ete.

* Theso {ractions are not ratios in the strict sense of the word, becanse
the terms are not of the same kinil. They merely represent quotients.
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Transposing, we have that

W W_ow oW, w,
..o%w YTV v,"v

Examining these, it is evident that all these fractions are equal
to a constant number, which we have called K,

w_ow_w,
v; = T}'; = —v;, efoc. = K. '\:\

Graph the numbers given as corresponding values of weisht
and volume, and draw your conclusions from the appeatance
of the graph. K
- You will find that the graph is a straight line of grgldient K.

Hence W is a linear function of V. N\

(2) One quantity may vary as the inverse df\adnother, or the
square, cube, square root, ebe., of another, \\ )

For example, in your Mensuration or %ience lessons, you will
find that the ares of a circle varies as\he square of the radius:
that the volume of g sphere varies §3,%the cube of the radius;
that the time of the swing of a sifaple pendulum varies as the
Square root, of the length; that the volume of a gas at constant
temperature varios inversely gs\the pressure. One quantity is
s2id to vary conjointly as a<Afmber of others when it varies as
their product. Thus, the meluc of a bar of gold varies conjointly
88 its length, breadth, and thickness. '

Exsampre.—A P sﬁiiﬁm 100 cm. long takes 2 sec. %o swing
fo and fro, Find the time for a pendulum 36 cm. to swing
to and fro,

Let ¢ reprelent’ the time of swing, say in sec., and I the length,
S8y in cm. sof-any pendulum; then ¢ varies ag V' I;

'”\Qt

\ i
‘\,§~ SoE=K4 and - K*_—;/”T

Todfind X, make use of the given value of ¢ (2 sec.) for the

p?:idulum of length 100 cm.

) 2 2
. A S
K V100 10

»+ the equation connecting ¢ and 7 is
t=2vI

* These fractions are 1ot ratios in the strict sense of the word, becouse
the termy gre not of the same kind, They meraly represent quotients,
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To find the time for a Pendulum 36 cm. long,
t = -2v36 = 1.2 seq,

RxErcise XXV (B) ~
L Ifacct, and b = 12 when @ = 2, find the equation connects

ing « and b, and find @ when b is 4.5, (\)
2. If zocy and y oc 7, show that » oc 5, O
3. If 005 and y oc é show that z oc 3, N

4. The weight of a cable of given thicknoss agrd}zﬁateria] varies
a3 the length. 1f 5 length, 120 ¥d., Whhis cable weighs
885 Ib., find the weight of 4 length 3 miles. Find also the
weight per mile, 2

5. Show thut the volumes of similar.'ééles vary az the cube of
their altitudes. )

6. Show that the volumes of spheres vary as the cube of their
radii. N
7. The sag in a telegraph Sive varies directly and conjointly as
the length and the, weight, and inversely as the horizontal
tension, RS
When the ngght is 2 oz, per foot, the lergth 80 ft. and
the hurizoﬁ%é\i tension 150 ib., the sag is 8 in. Find the
sag when™he woight is 13 oz per foot, the length 20 yd.

and th(\}' tehision 100 Ih,
8 T y«}o%l'%, find 7 and F, given thet x is 5 when Y is 10, and
V;i\l 1 when Y is 8,
91 The period of Planet, that is, the time it takes to make one
" revolution round the sun, is found to vary as the square
00t of the cube of its distance Trom the sun. Knowing
the period and distance of the earth, find the distance of
Juptter, the period of which is observed to be 11:86 vears.
10. In printing gas-light photographie papers, the time of ex-
posure varies as the square of the distance of the plato
from the source of light. If for a distance 8 in. the lime

iz 6 sec., what eXPOosure is necespary for a distance 18 in.?
For what distance would the time be 12 szee.?
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8. Rapid Expansions.*
We have seen that
(0 4 &) = a? -- 2ab + b2,
(@ 4 B3® = a® -+ 36 + 3ab® L B8,
(@ - b}t = al L 403 + 6a%® L 40b® + B4

I

Notice that the toerms run in descending powers of a.{in\d.\
ascending powers of b, and that when the sign between tha fwo
given terms is + the signs of the expansion are all +and that
when —, the signs of the expansion run alternately +/and =, the
firat sign being +, although not shown. S,

Look at the last example, and verify this réle\for finding the
coeflicient of a term, say the third term, from' the preceding
term. Fxamine the second term. Multiplyyls coefficient (4) by
the index of the descending power, ig,$he’index 3 of a3, and
divide the product by the number dflle term, i.e. being the
second term1 by 2. The result is the codfficient of the next term.
Thuos, E,>2<_§ = 6. &N

Try the second term the gaiiﬁa’way. Remember the coefficient
of the first term is 1. .

To expanad (o — DFAN
_ First write dowrithe ferms without their coefficients in descend-
'ng powers of g and ascending powers of &.

Thus, (2 2095, a5 — ath + a®b? — & + abt — B

O 1st 2nd Jed dih 5ih Gth
Th}(é}ziéulate the coefficients
.}.‘\ 1%x5 x4 10x3 10x2 B5x1
N 1 T3 T3 4 b

(@— by = a5 — Ba%h + 10a%® — 10a%® + Sabs — b5

The expansion can he readily checked by putting ¢ = 1 and
b =1; then each side shouid equal 0.
The coefficients of the expanded powers of (@ + D) can be

* The general formuia for the expansion of a binomial is given in Chapters
XXV XXVIII. ula for the expa
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arranged 50 as to show how one set of coefficients cap be obtained
from those of the next lower power, Thyg:

Coeflicients in order

(@ + 50

(& + by ;___’ 1 ~
{a + by I 2 1 R
(@ + by L:Ta::é:yl R
(a + by 1+ 6 4
T

The first and last coefficients are always Unity. The brackets

Y

indicate that the coefficients of ane expanded power when addsd
in successive pairs give the i.l:tte.‘r]:mzdia(;Qx Cheflicients of the next
Dower,

Tke arrangement SUZgests a triangld,"and is known as Pascals
triangle—Pases] being the name of she discoverer.

The reason underlying Pascal’s triangle is readily understood
if two suecessive powers are oampared.

3

Take, for example, (a4 Byt and {a + by
e+ Bt = g8 4gﬁq:+ 6a%5% + dabs 1 pe,

(@ + b = (g A + by

TN B)at + 0% + 6% 4 gops 4 b

S8t + 40% + 6ampe 1 gz o b4

AN +afat 4 4a% + 602% + dap® + B
O™= @+ (1 + Yath + (4 + 6)a’H® + (6 + 4)u2p?

N (& Labt + 18

L This Brrangement shows how the coefficients of the expansion
of (@ + b)> are obtained from those of the expansion of (a -+ )t

/70 \
\\
) 3

Exnacisg XXV (o)
1. Expand (7 + Y)Y and (r + 48,
2. Expand (7 — y¥ and (z — #)E.
3. Expand (@ — by, (g -+ b, (@ ~ by, 4. Expand (a? — 7.



APPROXIMATIONS

5. Expand (2¢ — 3b)*. (Take (z — y)* as a pattern, and substi-

tute in the expansion, 22 for z and 36 for y.)
6. Find (2a¢ — 3b)7.
8. Find {{a + B) ~ (e -~ 2.
9. Find the fifth power of (z2 + y2 — 9.

7. Expand {(a + b) + (b + ¢)}5.

295

10. In the expansion of (@ + b)%, put a and b each equal to 1.

and then find the sum of the cocfiicients,
1. Find, correct to the second place of decimals, (1-005
12. Ezpand (1 — 2a)1®,

7
S

4. Approximations.

%

ol

"N

A swmall quantity, say a small increase or decrea;ma};é usually
denoted by the symbol § or 8z. The latter deds“hot mean B

times , but is equivalent to a gingle symbol. 8\ )
Consider the cxpansion (1 -+ z)2 =1 + B F i

If x is amall compared with unity, i.esdf\r is a amall fraction,
#%, being & fraction of a fraction, will Be emaller still, Thus, if
Z is 0-, then &2 is 001, Generally;, the square, and therefore
the higher powers of very small npinkers, may be neglected.

If we write § for x, we have o0*
(1+3872= IF 25 approximately,
Similarly, if n repre‘sien?: BNy power,
@+ 8y =1+ ms.
Exameres. ()
(1-0012f¥'= (1 + -0012)2 = 1+ -0012 x 2

Q> 10024 approx.,

1-004:2 approx.

I

1

&
.Q{@@Os)? =1+ -0006 x 7

Theisame is true for roots. Thus:
S

~O VI+S=(1+8t=1+4s
\  §
. 0026
Exampi. 4¥1-0026 =1+ —g— = 1-00087 approx.,
= 1 0005
V09995 = (1~ 0008)}F = 1 — —
=1 — -0001

f

-$999 approx.

A\ ¢
AN

R

\

£\
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Applications.
1. Ezpansion.

(1} Area. A metal plate has the shape of a square, and its edgs
is of unit length, When its temperatare is raised one degree.
each edge inereases in length by a small amount 5, called.the™
coeficient of linear expansion. Find the increase in ares, N o

_ : oA\
Area before the temperature is raised = 1 ynit of areg.\

5, aflter - s N 3)? unitsvef area.
The increase in area for 1° rise in temperature ={1% 512 — 1
(428 + 82,

Now § ia very small, e.g. for iron, per °QNG)= 0000117; for
copper, -000017; and thesefore 82 can be mddlected. The small
corner square of the figure shows that 52 isrsall compared with 25.

It follows that the coefficient of swrfade’ cxpansion is approxi-
mately 25, i.e. approximately twiceMhe coefficient of linear ex-
pansion. QO

7" \W

N

Tig. 1

. :“\:.' (i) Volume. A metal cube of unit edge, when raised one degree
{ ) in temperatute, has each edge increased in length by a small
amount 3. Find the increage in volume,

Volume before temperature raised — 1 unit of volume.

»  after " » 17 = (1 + §)8 units of volume.
Increase in unit volume for I°rise= (1 + 8 —1 , ”
=35 388,

8 being small, the terms 352 and §° are negligible (fig 1).
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It follows that the coefficient of volume expansion is 3§, i.e.
three times the coefficient of linear expansion.

For £ rise in temperature, the surface expansion is 218 per
unit area, and the volume expansion 515 per unit volume,

2. The volume (V) of the wall or shell of & hollow sphere of
external radins R, and thickness ¢, is: _

O\
V = 42R3 — 4R — 42 N
= $n(3R% — 3R + ) R \J))
t e O
= 471'}{2{(1 R -+ ?) :‘.}"
Ii £is small compared with R this reduces to: ) \\
V = 4xR2t \¥
= surface X thickness. ) \\
5. Small Angles, \ -

In fig. 2, ZAQP is & small angle,zizlie; ‘number of radians in
which iz §. o

oY PN ON
The vglﬁe of §is ai{gj]fé’ va;l;gb sind = op co8d = op and
tan§ = _O;\_T Ve -

A\ / Fe) N A
" Fig. 2

NS
Whé% issmall the difference between arc PA and perpendicular
PNwis, small, as is also the difference between OA and ON.
(“imagine the angle to become smaller by moving P towards
{ & Then N will also move towards A. As a resuls PN will become
\ more and more nearly equal to arc PA, and ON to OA and OP.
Equality will only be reached when P actually reaches A,
when, of course, the angle is Q.
tis seen then that when § is very small,

_ arc PA ~ PN
and ON = OP.



298 SMALL ANGLES

It follows that, if the angle 8 is measured in radians,
8ind ay §, tand au 8, and cos$ a 1,

where the symbol A means “is approxXimately equal to .

This iz confirmed by reference fo tables,
3 = 0524 radians, tan3® = 0624, sin3° = 0525, ens3° = -gygp
1° = 0175 radians, tanl® — 0175, sinl® = 0175, cos1° ~ -ggod ™\

Exererse XXV (p) <\
1. The dimensions of rectangular plate of copper at Q0. are
18 in. by 15 1, Find the ares of its surface atag” C. _

2. A eylinder of copper has a diameter of 192 e, &b 15° ¢, Find
the area of one end at 100° (. ]f itg lodgtl at 15° C. i
15 em., find its volume at 100° C, \

3 The volume of 5 flask is 250 o.c. at 02 B What will be its
volume at 100° (.7 (Coetficient’Of linear expansion of
glass -000009.) \

4. The diameter of a spherical glagdBulb is incressed by 1 per
cent. By what percentage Gs.its capacity increased?

5. The capacity of glass fagkat 0° . is 1 litre. If it containg
alr, what volume williescape when the flask is heatod fo
100°C.2 (Coeflicient.df expansion of air is z3y per degree C.)

6. Find Spproximately’

ST ooy m\ o LT
’\/1'0003’,1 3 ‘\/0'997, '\/1002‘],
(00BN (-996), (10-06)=.

7. By how mitioh must the temperature of a shect of iron be
raised §8, 6rder that its surface area roay be increased by
! pef ‘eent?

8. At}(}l}t terperature will & rod of copper 199 cm. long at

35 C. and a rod of iron 200 om. long at 15° €. have the
W\ ‘same length ?
®If 3 is & small fraction, show that
mately.

1.
T+3

=1 — § approxi-

N\ 310. What is the volome of the material of 2 hollow sphere of

diameter 10 in., the thickness of the material being & in.?
11. What are the errorg ber cent in writing § for sind and tans,
and 1 for cosd whep § jg (i) 5°, (i} 4°¢
12. Find (i} tun$ tanz; (i) sind sing: (ili) cosd cosz, when
g = 8-?1“ and & = 60°. What is tho value of each when
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Exzrerse XXV (r)

L. The area of a sector of a circle is 1Ra, where @ = the length
of the arc and R the radius. What does this formula
become when the sector is a semieirele? What, therefore,
is the area of the whole eircle ? '

2. The area of the curved surface of 3 spherical cap is 27R¢,
where R is the radius of the sphere and ¢ the altitude of)
the cap. What does this become when the eap is alhpmi-
sphere? What then is the surface of the whole, sphere ?

3. The volume of an ellipsoid is &rabe, where a, b,ahgl ¢ ‘are its
semi-axes. What does this become for the. sphote?

4. The volume of the cap of a sphere is 3mf(IN5r2) when f i3
the altitude and r the radius of the base pf the cap. Apply
this formula to a hemisphere, and 46/ whole sphere.

5. The area of a segment of a circle 18 given approximately by
the formuls, g;(rlb“ + 3R, whf:;:é h is the altitude and b the

base of the scgment. A;ppija" this to the semicircle, and find
the etror per cent. \

8. Another formula for the area of a segment of a circle is
2h(b + 20y, in which ¢ is the chord of the semi-are. Apply
this to the semfigircle, and find the error per cent,

1. The curved surfies of the frustum of a come is as(R + r),
where 5,i% the slant height, and R and 7 the radii of the
base gndtop. What does this become for the full cone?

8. The volfﬁiﬁe of the frustum of a cone is 3=A(R® + Rr + 'rz_],
¥lerc h is the altitude of the frustum. What does this
\'Q)e'éomc for the full cone? Apply the given formula to a
o\ Veylinder,
4 ~\" ¢

PR

\J
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CHAPTER XXVI

PROGRESSIONS, SERIES, PERMUTATIONS AND
COMBINATIONS, BINOMIAL THRORIH O\
. Z '\
1. Progressions, W
By a progression we mean g series of numbers which proceeds
in erder according to some law. 0
The two simplest, Progressions are Ar'éékmetzimz\l}'mgmsséon and
Geometrical Progression, v

(i} Arithmetical ngresiéig}\fa.r.}

In an Arithmetical Progression,'ﬂi(.-:f terms proceed hy equal
added amounts (or differences), )
The added amount may be positive or negative,

LAY
<

Exanmrizs, O8N

i) 2, 5, 8, 11, 14, 17, bk,

The above numbers Jortn an Arithmetica] Progression, ]

Beginning from t]:[{i{}i_rst number, 2, the second, 5, is obtained
by adding 3 to thefirst, Similarly, the third number, 8, is ob-
tained by adding 3"to the second, and so on,

The added-amount, or common difference as it iz more u§ually
called, is found by taking any term and subtracting from it the
preceding)fsrm.

05, 0, =5, —10, eto.

The common difference in this a.p, iy —5. Verify this statement,

N(H) 32, Ta, 114, 154, oto.
\\ « This is an a.p, having a eommon difference 44, Verify this.
Exererss XXV (a)

1. Write down three more terms to each of the given examples.

2. Write down a few terms of the a.r. of which the first term
is 34 and the common difference —4a, Contrast this pro-
gression with Example iii,
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3. Write eight terms of the following Arithmetical Progressions:
(i) First term 6, common difference 4.

(ji) kR4 L 6 L » __4
(i, .. —8 4.
ivi .. . =6 " " ~4,
&) .., 1 —4,
(viy ., . 0 . » -2,

L\

4. Construct the A.P. of which the first term is ¢ and the common
differenco d. Compare the coefficient of d in any term With
the number of that term. N

(it} Geometrical Progression (a.p.) \\

In a Geometrical Progression, the terms proceed by a constant
ratio. In other words, the ratio any term bears.o the preceding
term is the same throughout the series. { &

The constant ratio may be positive ot negative.

w

Examrres, R

(i} 2, 6, 18, b4, 162, ete. O

The above numbers form a Geometrical Progression. .

Beginning from the first nnasber, 2, the second, 6, i3 obtained
by multiplying the first by Bimilatly, the third, 18, s obtained
by multiplying the second\by 3, and so on.

The common mti\ié found by dividing any term by the pre-
ceding term, \ .

Contrast this progression with the ar., Example (i), p. 300.

(i) 12, ~ 35—k, ete.

\/ -3 1 . .
The c-on\h';n}n ratio of this .. is o5 = —7. Verify this state-
®) 12 4

ment. \\J
(iiii‘%, 8a? 12¢®, 2403, ete. ] ]
@i’s 15 & 0.7. having a common ratio 2a. Verify this.

N4 Exercise XXVI (B)

1. Extend cach of the series in Examples {i) {ii) (ifi), by three
terms, .

2. Write down a few terms of the G.P. of which the first term is
3a and the common ratio —2¢. Contrast this progression
with Example iii. .
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3. Write down six terms of the following Geometrical Progressions:
(i) First torm 1, common ratic — 2.

{ii) 23 B ]: Y] o

@y, -2 . w  —4

4. Construct the Geometrical Progression of which the first term,i

@ and the common ratio 7. Compare the index of the power
of 7 of any term with the number (in order) of th:}t\tgrm.
5. Determine whether the following series are in Ggometfical
or Arithmetical Progression. Give reasons in gack case.
{i) 3, 6, 9, 12, ete. (i) 3, —6, 12, ~&2\ete.
(i) —4, ~2, 0, oto. (iv) —4, —2, <1’,~ ete,

Cmt ot

2. Graphieal Representation,

(i) Avithmetical Pa-ogrlg‘a}é'on_

If the terms of an 4.p, are plottédf\a,éainst the order of the
ferms, then, since they proceed kyyequal added amounts, the
plotted points lic in & straight lige {

%

see p. 141),

This straight line * hag an up gradient if the added quantity is

positive and a down gradiens if negative {fig. 1}.

* If the line i5 drawn & ig not ¢ graph in the sense in which we have ,“E"my
used the name, since the Dortions betwenn fhe plolled points have no sigrificance
The line serves (o shomw mly the relatipe position of the plotted poinis.
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(L) Geometrical Progression
If we plot the terms of a @.r. against the order of the terms,
the points lie on a eyrve.
Casiz 1.—When the common ratio i positive and greater than

unity, the terms increase and the curve diverges from the axis
of x (fig. 2).

Ratio
o) S S
5 @
Pl S §
_ 2
I
-
1. 2 3 4 5
{ Greer}
Fig, 2 NV Fig. 2

Csse 2—When the common ratio’ is positive and less than
unity (fractional), the successivgy terms decrease and the curve
gradually approaches the axig ofw (fig. 3).

- ST T
S

j ] |Laﬁ_ negaiing
X/ Y Is [
(i

) der)
> N

L
|

Fig. 4

CasE 3~ When the common ratio is negative the terms are
alternately positive and negative. Such a series can be regarded as
consisting of twe series, one positive and the other negative (fig. 4}.

3

N
N

y 4

&

%

£
Terms
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The common ratio of each sef is the square of the ratio of the
series, Prove chis.

Exercrse.—Apply the graphical method to Ex, XXVKs), No.5.

‘3. Arithmetical Progression.
(i} General Term \

In Exercise XXVI (4), No. 4, you should have found that in the
A.P., the first term of which is g and the common diffepcncs d,
the coefficient of d is one less than the number of the ferm.”

If we call any term the nth tetm, 1 representing thg“number
of the term in order of succesgion, then KN

The nth term is {g + (n— 1}{1&’\ /

This is called the general term, or the geheral expression for
any term, From it any term can be found without writing down
the terms which precede it. "%\

Exampre.—Find the 35th term ofztlie series:

L 5 9, 13" o

Bince the geries Procecds by goudl added amounts, 1t is an £.p.

The first term is 1 and the ewimon difference 4.

The 35th term iz 1 + (B851)4 = 1+ 34 x 4 = 137.

o () Means
The terms between,\a,ny two chosen terms of a geries are called

N

Means. In an @ithmetical Progression, such terms are called
Arithmetic Maa\lh and when there is only one term between
the chosen feruds it is called the Arithmetic Mcan of the other
two. \$/

To ingept’n given number of drithmetic Means {(4.:.8) Delween

gﬂiu%ﬂjumbem
Exkvris.—TIngert 6 4.ag between 2 and — 26,

Tet d = the common differcnes.
Then the terms are:
5 @+d), @+2d), 2+3a), @+4d), (245,
(2+6d) and (2 +7d) or —28,

It is scen that — 26 is the &th term,
Heice 247 = -9,

7d = —28,

d= —4,
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The means are therefore:
C =2, ~—6, -10, —14, -—18, and -92.
The drithmetic Mean (a.m.) of two numbers is half their sum.

Liet the numbers be @ and & and their A, M,
Then a, M and b form an a.p.

A\
Hence M—-—a=56~2, .
2 =z + b, )y
a+b e\
M £ ——2 » < Sw

-\
N
N

(1) The Sum of a Number of Terms in AP

Consider first a numerieal series, say 2, B, 8, 11:;}4, 17, ete.,
and let us find the sum of, say, 7 terms, \
Represent the sum by 9; then N

and reversing |3 = 2+ 5+ 8+ 1LgnM+ 17 + 20
the terms, )s =20+17T+ 14+ W8+ 5+ 2
By adding, 28 = 22+ 92 + 22 $82 + 22 + 22 + 22

L g

=22x7; 8N

e, 8= 77,00 ,
¢ J
Observe that the Suli is half the produet of the sum of the first
and last terms andhthe number of terms,
. {7 thirst + last) x number of terms
Le, PRSS 3 -
The "lé.f‘al Formula.
Lej;{ﬁh series be: _
Y 4 e+, @+2), .. (a+7 - 1d);
NS
hﬁ‘ﬂ, iR, represents the sum of n terms, o
vV By = a + f(a+d) + (a+2) +...t (a+n—1d)
and Sp= (a+n—1d)+ (¢et+n-2d)+ (a+n—3d}+...T o
Adding, 28, ~(3a+ %~ 1d)+ a4 n-1d)+(2atn—1d)+ ... +(2a+n-~1d)
‘———————— 4 terms all alike ————=r
=n{2az +n— 1d);

8= g(za +n—1d),
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As before, the result may be stated in the form:

8, = g—'(ﬁrst term + last term),

Exsromse XXVI .(c) ~

I. Find the 21st term of the series: 1, —3, —7, =11, efg, °
2. The first term of an a.p. is 2, and the tenth 29. Write\dgwn
the first six terms, O

Ny
3. Show that the scries formed by adding each tern of an A.p,
to the succeeding term is gn 4., AR

. Insert three arithmetic meang between 3 a,xr&‘lé.

4

5. Insert four arithmetic means botween 5 and —10.

6. Find the sum of the first 25 whole nuhbers,

T. Bstablish a formuls for the sum o ’T;h% {irst »n integors,

8. Find the sum of the fist 20 oddnumbers,

9. Find the sum of the first 20 even’numbers.
10. Tstablish formule for the fisst n odd, and for the first 1

even nnmbers, N
11. Prove that the numberiof dominges required for a sef is the
sum of the following series:
K33, 2@+ 1),
where x dendtes the highest number ugzed (i.e. the highest
domino is}}%lble x).
Find(the number of dominoes required for a set, the
highe&t)domino of which is double fix.

12. F ind\fhé sum of 20 terms of the serieg whose nth term is
Wy — 2).

13, .Blot. the terms of an A.r.,, and on the same figure show a
rectangle, the area of which reprosents the sum of the
Ny terma.

\ “A4. 1t @, b, ¢ and d are consecntive terms of an 4.p., show that
N - be ~ ad = (b — ), .

4. Geometrical Progression.

(i) General Term

Your answer to Exercise XXVI (8}, No. 4, should be that the
index of 7 i3 always one less than the number of the term.
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Thus the nth term of the a.p. g, ar, ar?, ar3, ete., is -1,

This enables us to write down any term without determining
the preceding terms,

Examrre.—TFind the tenth term of the series:

3, —6, 12, —24, ete,

Here ¢ is 3 and 7 is —6/3, f.e. —2. .

Hence the tenth term is 8 x (—2)" =3 x —5I2 = —15386. )

If logarithims are nsed in such exercises as the above, it must
be remembered that the aceuracy of the result depends upon the

range of the logarithms nsed, N
Applying logarithms to the formula for the Zeneral termy 'g\je have:

log (nth term) = loga -+ (n — 1) log?".f'f}\

(i) Geometric Megns PAY;

The terms between any two terms of a Geometrical Progression
are called Geometric Means. A\

When there are three terms only, the mifidle term is called the
Geometric Mean (a.M.) of the other Lwo,

Toinsert @ given number of Geome;fiﬁ:ﬂff eans between given numbers.
Exampre.—To insert three“Gé;}iﬁetric Means between 2 and 162.
Let 7 be the common ra.@o; then the terms are:

2, 2r, §:3 2r% and 2%, or 162,
Hence \ \ 2rt = 162,
4 = 8],
¢ ‘1\ 4 T = :z: 3
The mean,s\’ai:\," ;therefore, 6, 18, 54,
or § —6, 18, —5d.

TheBeometrio Mean of two numbers is the square Toot of their
brodiret.

\\Lé‘o & represent the c.u. of a and b.
Then g, @ and b are in 6.P.

H G_»
ance a= @
G2 = nb,
@ = vab.

Contrast; £his with the a.u. of ¢ and b,
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(1) Geometrical Construction
To find the a.at. of two given straight lines.
Let the lengths of the lines be 7 and Y units respactively.
Referring to fig, 5, AB = 7 and BO — ¥, AC == (z + 4.
Biseet AC at ID; then DO = HT - y) and DR < Lz — .
With centre D and radius DC, describe a semicirels on AC, ON

From B, erect a perpendicular to meet, the curve at P,
Join D and P, {

N

WA

Then DP =1z +y. O
Now PB? = AB x BC =2y (see Ch. XI, 5, 3).

Hence PB=vay. N
Observe that DP is thewd, M. of 7 and Y- It follows, since the
hypotenuse of a rightoangled triangle is its greatest side, that in
. general the A, of tae, humbers is greater than the .31, Under

what conditions aré the two means equal?

. }’\ ]
{1 The Sum of & Number of Terms in @.p.

Let the teimiis be a, qr, ar®, qr®, ete., and let the sum of 1
terms be epresented by 8,,.

Then, & Se=a+ar+ar a4 gl
Mt} bly by P, "8, = aroare art L+ gt 4oart
Sabtract, § = ™M.=a ... e T —art
o N
2\ Sl — 1) =g — ™),
’ afl — rn)
Se === r

When » is greater than 1, the above formula is hetter written
in the form;
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Hence, to find the sum, extend the series by one term, and
divide the difference between this term and the first term by the
difference between the common ratio and mity.

Exayrre.~Find the sum of five terms of the series;
6: = 2) %, - 'E', ate,

The numbers are in ¢.P.; the common ratio is it = — 1 e &
_ 6 3 \)
7N\S
e G S ) O
$TTT (P I N
. = 434 '\’;'.‘
Verify this result by Arithmetic.

The following graphical representation of the b is interesting:
Let Py, Py, Py, ... P,, represent the terrgs’@ia &.p. (fig. 6); then
1Py =g, 2P, = ar, 3P; = apA\W/nP, = a1,
Join Py, Py, and produce the‘s%faight line P,P, to cut the
axis of 2 at Q, TN

Draw P,M parallel to Gn; ¢heh PN = 1 and MP, = ar — g,
or fifr — 11). P N e ammast ?

Now triangle P,Q1 1 Adhilar to ST R
triangle TP, M; thereithe ettt e i L
A\
-1(2 = le\ A rea /
1P, — M/ 1=
! \X P 2 Sy :Is B, ¥
1@=1P, x PM =8 -
2\ :MP2 g ‘,
N T
N\ afr — 1) =] [
:..\"«, . . u+".1_1¢1 2 . {M‘\‘)
== Fig, 6
3 . 1
1

L
The sum of  terms is _.1_1'.-‘___1 2 or {ar™ — a} X o
=

Draw QS parallel to 1R. )
Take the next term, namely, the {n + 1)th term. Tts value is
ar®, Let P,.. denote its position on the graph. Draw P, RS
and P\T parallel to Qn, and thus obtain the rectang}e P,RST.
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Then PR = ar — g gnd PT =y

of P, RST represents the sum of n terma.
The significance of the rectangle PyTQ1 will be seen irmme-
diately.
The same construction holds good for a ¢.p., the termd of
which are decreasing. .
Fig. 7 illustrates suck a series. (NN
The common ratio iz, of £odrsd, less
than unity. A
The area P,RST represtuts the sum
of 1 terms, N4
Ag the numberyn} terms increases,
the last term \@nproaches more and
more the value O the graph gets closer
and closer fg'ythe axis of n, and the
line RS ge?;s nearer and nesrer to 1Q,
the regtahale P RS becoming more
Reatly Bqual to tho rectangle P,1QT.
When*the number of terms ig indfinite,
tles rectangle representing their sum
Ndiffers by no measurable amount from
o the rectangle P, 1QT.
Hence P,1QT represents the snm of an infinite number of
terms of & @.p., the first term of which is 2 and the common
ratio #, » bcing\l\ésé' than wnity,

Now ¢ Area P,1QT = P, x 1Q

and therefore the areq

N TexX g
“\s.
} a
N g
Nt - i -2
Le. 8, == =5

Thus in fig. 7, the rectangle Py1QT represents the sur of an
infinite number of terms in G.P., the greatest of which is 1P;.

The resuit, 8 = I__a? may be deduced from the relation,
2 — arn -
Sn = 1 T T -

When r is less than unity, 7" becomes smaller and smaller 88
7 increases,



GEOMETRICAL PROGRESSION 311

The term a7 can be made to differ from 0 by as small a quan-
tity as we please, by malking large enough,
To make ar® actually 0, % must be infinite,

- a— 40 i3
In this case, 8, = =~ i—

Exampre—Find the sum of the series, 7
L4} 4 ete., without limit, Here = %,

and 8, = 1 _1_,

1—=171 Fig.8
N/

2 .
Fig. 8 shows how the resnlt can be obtained graphically::f;

't # 4

Recurring Decimals, N

A recurring decimal is an example of a ¢.p. With an infinite
number of decreasing terms. PN

Thus: 9~ 33333338333, L ©

=5+ o + v + 55600 + ete.
The common ratio is 15, and the S of the terms is the value

of the given decimal, N\
4 _ a3 103 1
N S S el ek it I
Q 3 ;
RN g 7 3
9 rs 3
Similarly, -28(3 0" Lo Tiom0 T etc.:[
\¢
O 2 15y
PR 0T-%
N g
«ad \ B E - %

AN Br3 20 -1+3 _0-2+3
o”\;‘,z = _96-‘_ or 80 90
\ a1 -B8-2

~ 90 - %0
-1
T30

. *The alternativa steps sxplain the rule for converting a reenrzring desimal
info a vulgar fraction,
{oBgy il



312

9.
10.
11.

12.

13.
14.

i5,

GEOMETRICAL PROGRESSION

Exercise XXVI (n)

- Find the 8th term of the series 2, 6, 18, 54, ete.
. Find the Bth term of the series —2, 6, —18, 54, ate.
. Bhow that the series obtained by »dding each term of a GoR,

to the succeeding term is a o.p.

- Bhow that the serics ohtained by subtracting each tefm, of o

&.P. from the suceeeding term is & g.p.

'\
. Bhow that the scries obtained by multiplying eaclterm of &

¢.P. by the succeeding term ia 3 @7
¥ g

. Insert three .M. between —3 and —768., \ .
- Find a straight line ¢, such that the 5ide "of the square of

-area 2-25 sq. in,, the diagonal and pare in .p.

. Find the sum of the first six termsﬁf%he scries 2, 6, 18, 54,

ebe., and of the series 2, —6, 18,%- 54, cte.
Tind the sum of eight terms ok $he geries 6, 3, 11, §, ete.
Find the sum of §, -4, {g,ﬁ-%“. .. to 10 terms.
The fourth term of a G243 24, and the nigth term —768.
Find the eleventh tecnr.
If 5 is the sum of a"&F., in which the first term iz g and the
last b, show that the common ratio is ;‘_:_a
+ &) . - .
Expross asyulgar fractions, 524 and -2507, from first prin-
ciplesd,

Find thevsum of an infinite number of terms of the ‘series
1558 + 82 — 88 + etc., when 8 represents a Iraction.

Degw o straight line 2 in. long, and by successive biscction

\:.'\ﬂlustmte that the sum of the series 1, 1, L, 4, etc., without
AN\ limit, is 2.

™

PPN

\‘:" 1

¢\* 5. Harmonieal Progression.
. Numbers are in harmonica] progression when their reeipro-

cals are in arithmetical progression.
Exaurerrms,

@) 3, & 1, 4, ete., are in B7., becanse their reciprocals, 2, 3, 4,
5, etc., are in A.p.

() 3, % % & 1, 12, 2, ete., are in H.P., because their recipro-
cals, 2, 13, 13, 14, 1, &, &, ete., arc in a.p, '
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(iii) Since the general form of the A.p. is
a, at+d a+2d, a+3d,...0a +n=1g
the general form of the m.p, is
1 1 1 1 1

¢ a+d a+2d a4

¥

7 TR
1

A
2. If @, b and ¢ are in B.P., then 11 and 1 are in A.P.
a'b A ’:\‘\\.
1 1 1 1 ~\
H T t_z=-_12 N
£Nes 5 p P b: \ N/
_ _ N
from which a-bh_b-¢ g
ab be m'\\
and a_b ~ 2 g
b—e¢ ¢

A
Le. the tatio of the excess of the first oyé{ ’s‘s}e second to the
excess of the second over the third, is edudl to the ratio of the
first to the third.
Harmonical progression is offen eefined in this way. The

definition given in 1 is more eadily xémembered.

3. Problems on harmonical progressions are most conveniently
solved by transforming thesgeries by inversion into the corre-
sponding arithmetical pregression. '

Exapie.—Find thé Warmonic mean (m.x.) between @ and b.

Let x be the mar ‘

Then 1, 1 &pﬁ%’x are in A.P.

a 3;;:\. . . .
s"\'$~ 1

Hencon™ z a b
R\ 2 1 1
O z75 "W
\/ 2_ath

o
oo 20
a+b

4. There is no general formula for the sum of the terms of a
onical progression.
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Exercise XXVT (g)

1. Extend cach of the series given in 5, 1, by three terms,
2. Interpret the result of the example given in §, 3,
3. Insert two harmonic means between 3 and 12,
4. Show that a, b and ¢ are in A
0) ap. 2220 _ ¢ R
h—e¢ @€ 2AN
- . — k I e\
p 2”9 @ &
{ii) a.e. i b e 7 "‘}‘
(iii) m.p. if g_:_.f -2 ) \ '
5. Constrnct and examine the graph of a harfonieal progression.
AN
6. Compound Interest. (&

In compound interost, at the e'nd':c’f & stated period, usually a
year, the interest for that peried isadded to the principal, thereby

giving a larger prineipal for thenbxt period.

If interest is paid at thewtatt of, say, 5% per annum, then a
principal P, invested for g Year, gains an interest of -05P, and
amounts thereforc to 1°05P, i.c. 1-05 times the principal at the
beginning of the yoat.™ If this is allowed fo remain for another

year, at the end ofthis second year the sum amaunts to
5P % 105, ie. to P x (1-05)2,

and so on...Thus the amounts at the end of suceessive years are
as follows

‘o\ ] o __‘__.,___ — —

P(1-05) | (105 | P05 | ... | P(L05)"

\ Y I 7 is the rate pet cent per angum, the amonnt at the end of
) TL)
the nth year is P(l * o6
Notice that (I + 1—(%) is the sum that £1 amounts to in one

-year. If we call this amount @, the amount of P in n years be-
comes Pd”, and the compound interest is therefore Pa® — P.
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Exanvrie—Find the sum to which £120 amounts ja 5 years
at 45 per annum, compound interest.

¢ \E
The amount (A} = P(l + WO)

= 190 X (1-04)5,
This is best evaluated by logarithms. Thus:
log A = log120 + 5log1-04,
from which, A = £148,

7. Instalments. . -\

Houses are frequently purchased throngh Bhilding Societies
by equal instalments extending over, say, 20, 5. To find the
annual payment per £100, reckoning compound interest at, say,
5% per annum. )

Let £2 = the annnal payment, the first” payment being made
after | year. When the 20th paymenb is made, the first payment
has borne interest for 19 years, and so on.

S
Value of 1st payment in 19 years = x(1-05)!®.
»  2nd o {I8years = x(1-05)1%,
ete. \w’
s 20th 4 N 0 years = Z.

N1

N/

Value of all gL(é";ﬁé;yments
AN =gl + 105 + ... + 1-0519)

O™ ¢.r. of common ratic 1-0B
§ (105%™ — 1) o
R = ToE =1 5 - oo
O ! )
_and this should equal the money to whick £100 would amount in
20 years at the same rate, namely £100(2-05)%. . . . . . (i) .

From equating (i) and (ii),
gy 1051
z = 100 x {(1-08)* X 75z 7

= £8:021 = £8, 0s. 5d.
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Exercise XXVI ()

1. Find the compound interest on £250 for 3 years at 5% per
annim,

2. Construet graphs to confragh the simple and compound intere(s
on, say, £100 for various periods at, say, 49 Per anduin,

3. What sum will amount to £300 in 5 years at 24%, per afipgim?

¢, The population of & town in 1880 was 150,000. Lifcréased
by 5% cach decade (10 years). What was the population
in 19107 ' N

5. The pressure in the bell-Jar of an air-pump @tithe end of suc-
cessive strokes was as follows: O

[ Stroke - . ete. |

st | 20d |obrd |' dth
L 5.4

15

- — ~ t ' !
Pressure {Ib. per sq. in.} :13'-5?? 12-15 ‘ 10-935 f| eta. l

Calculate the pressuzed j;mt the end of the 20th stroke.

6. The resistance in a mopirarmature circuit when the starter is
on the various studs is given by the series:

RARL Bf2, Rf ... ete
Calenlate(the resistance for 5 studs when R is 2 units
and Rf* 16 20 units.
7. The followine are successive swings of a pendulum:
N 50, 49, 4802, 47-06, ete., em,
'“\~;§Oalculate the length of the 10th swing.
8. Ivthe “ Achilles and Tortoise race, if Achilles runs ten times

WA\ 88 quickly as the tortoise, and the tortoise has 100 yd.

starf, then when Achilles has covered 100 yd. the tortoise
has moved forward 10 ¥d., and so on.
Achilles has thus to cover a distance
(100 + 10 + 1 + 5 + 135 + eto.)
before he catches up the tortoise, f.e. before the distance
between him and the tortoise is 0. Find the distance by
summing the series.

9. Find the annuval payment to repay a loan of £500 in 10 years
at 4% per annum,
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8. Application of Logarithms to Geometrical Progressions.

Let the series be a, ar, ar2, ... gre-1,
The logs of the terms are:
loga, (loga +logr), (loga + 2 logr), ... (loga +n—1logr).
Notice that these terms have a common difference, namely, » O
logr. The terms are, therefore, in Arithmetical Progression.

The logarithms of the terms of a geometrical progression are m\
arithmetical progression, the common difference being the Ig;ga-
rithm of the common ratio. R

This result is of importance in science. )

If the common ratio is less than unity, the comm@;é‘:iﬁerence
of the a.p. is negative. ' )

The relation botween a .2, and the correspobditg 4.p. of the
logs of its terms is illustrated graphically in %9;

AN
9
Fl=1 [
i
Fa QN =
gL ]2
i T 3
8] A o
/‘\ | g‘
X‘"i .._a“") -
. I |

NS/ Order
O Fig. 3

."\' W ]

The Q)mmon difforence betiween the logs of the terms is called

the Logarithmic Increment if 7 is greater than unity, and the
Logartthmic Decrement if less than unity.

PN
) Y
 §

\ Exsretss XXVI (¢)

1. Plot the logarithms of the terms of the following series, a.nt%
state the logarithmic inecrement or decrement in each case:

() 1,10, 100, 1000, ete. (i) 100, 10, 1, 0-1, 0-01, 0-00L, ete.
{i) 2,10, 50, 250, ete.  (iv) 2,1, b, } &, ete.
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2. The following are the angnlar dizplacements of a pendulum,
from its position of rest, during sucoessive swings:

Right | 10 ‘ ! 9 82 ! ! 74 degrees]
IR, S . .
| Lett i 935 86 J' 78 i degrees

Find (a) the average logarithmic decrement (i) per han
swing, (i1} per full awing; b\

{B) the angular digplacement during its 10th Sxtur-
sion tow&rds the left.

3. The heights to which a hall rises in succesmve rebounds are
as follows: : \\
36, 21, 1ft.4in, 10
What relation exists between thase numbers?

4, Compare the second term of the sérfésy

L, % é 3, eto
with the sum of an infinitemumber of the terms following it.

5. Find the sum of vary’méﬁ tmmbers of terms of the series:
1 é} ’1! -‘ZlTs 8‘[: ete. 3
and plot the \(esults against the number of terms.

Aftex e@.nﬂmng the graph, say to what value the sum
tends,

6. Find the Falue of the series:
N7l — 2 4+ — a® + ete, whenz <1,

Iy L. .
o~ ‘and show that it is the difference between the values of an
.%" infinite number of terms of cach of the series:

N 1+ 22428 + 28 +ete. and x + o8 + 25 + ebe,
0 1. The following numbers show the population of England and
/ Wales for the years given.
Test whether they follow approximately the geometric
law.

———]

1881 ] 1891 ! 1801 . ]911

T
Year - - - i 1851 | 1861 ‘ 1871

e B

239{!2‘300 32 )SI '360:{

Pop. (millions) ! 1793 2007 [ 2271
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8. There is an important series:

1 1 1 1
where 31 =1x 2 x 8, 41 =1 x2x 3 x 4, ete.
Compare each of the terms after the first with the cor-
responding terms of the series:

1 1 1 1 L\
1+§+2—2+§3+...+2—ﬁ, A\
1 , 1 . \ \.
e.g. compare 5] with g A\

- Hence deduce that the sum of an infinité_pumber of
terms of the first series is less than 3. \V

2 g8 \ .
9. Take the seriea T + 2 < S_I + 3 + etc’.,}:@d find the ratio of

the (n + 1)th term to the nth tepm\ How does this ratio
change when n is increased indefibitely, @ remaining con-
stant? After what value of mwill the terms decrease suc-
cesaively ? I

10. The following numbers are $aken from a table, showing:

(1) The annuity#100 will purchase.

(2) The mee of an annuity of £10.

50 f 52\[\"’5& J 56 | 58 | 60 | 62 | 64

Age |

1y g ﬁ;‘G;QIL ﬁji}fﬁ%ﬁf]ﬂ] 7/8/4 | /1077 7/19/0 | 8/8/11| 9/0/8
X .

(2} £157,ﬂ16;r"i52f0 Jl45;’]8 139/10 | 132/19 | 125/15 | 118/8 (110/16
."\$~

,\'\\I’lot cach, (1) and (2), against age, and by interpolation
3 find the figures for age 57, and by extrapolation the prob-

("} able fignres for ages 45 and 68.

™ Draw other conclusions, if possible.

11. Prove that the product of the sum of, and the difference

between, consecutive terms of & &.P. form another G.p.

12, Find the average of n terms of a ¢.P., the first term of which
is @ and the common ratio 7.

13. Find the average of n terms of an A.P., the first term of which

is @ and the common difference d.

"\
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14. Find the sum of  terms of the series 1 + 5+ 3+ et
By how wmeh does the sum to infinity cxceed the sum
of T terms?

18. Determine the number of years in which s sum of money
will double itself at 5 Per cent per annum compound
interest. ~

16. The sum of the following series can be found by the saine
method as that for finding the sum of g geometrie Series.
The expression obtained on subtracting containgly Gp.:

1420+ 3% + 4g8 + . 4 g W
Find an expression for the sum of » ferms, 4 o
Hence find the sum of ten torms of the following series:
1-!-6+27+108+405+e"ﬁ(;.
17. Write down the general term of the serfes:
I N\
T+ g E + -I“Q-‘ete.
Find the ratio of the nEEETmM, to the preceding term,
Under what conditions will the ratio be less than unity?

9. Permutations and Combirigtions.

The subject of Permutdions and Combinations is concerned
with the number of Ways in which a number of things can he
grouped together, nprhnved, o selected from a given set of things.

The distinction hefiween Permutations and combinations is as
Afollows: O }

In Permutations, » different order of the same things 15 1e-
garded ag 4 /different arrangement; whereas, in Combinations,
ne regard4s paid to order, but only to the things which constitute
a group(y”

In Iigxample, if we had two counters, one red and the other
bl‘l@(,\\-hen, Dlacing them together, fay ome on top of the other,
ouly one combination js possible, the position of the red counter
(“With respect (o the blye being of no consequence, On the other

~~; “hand, there are two permutatjong posaible, namely, one in which

the red connter is above the blue, and the other in which the
blue is ahove the red,

10, Permutations,

(1) To find the number of permutations of n things, taken 7
at a time,

This number ig ustally denoted by , P,.
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The n different things are conveniently represented by the
letters of the alphabet, but without restriction as to number,

Let g, b, ¢, d, etc., represent some of the different things.

Consider the selection of:

(i) One letter,
Bince there are 1 different letters, the number of ways in which
one can be selected is n;
Le. P, =n. O\

(i) Two letters. O

One letter can be selected in n ways. Consider ogly.one of
these selections, say the letter @. There are now TN Iett(;r&
leff. A letter to be placed with @ can be chosen from the remain-
ing (n — 1) lstters in (n — 1) ways, This is tzne'for each of the
n letters selected firat, and, therefore, for all thex letters selected
first there are n(n — 1) ways of selecting the.second, and, there-
fore, n(n — 1) ways of selecting two things“from n;

e, Py =n(n .

Note.—TIn these permutations, ’aﬁy two letters, say a and b,
will ocour twice; once when @ we? first selected and b from the
Temaining (n ~ 1) letters, and‘Once when b was first selected and
& from the remaining (n — Mletters.

(i) Three letiers, PAN
Two letters can b’\é'ﬁielected in nfr — 1) ways, After each
selection of twa, [n\— 2) letters will remain. Apcther le‘tter can
be selected from tle (n — 2) letters in {r — 2) ways, and since this
is frue for every one of the n(n — 1) selectiona of two letters,
three lettersicaln be chosen in n{n — 1)(n — 2) ways;
S ie. Py =mn(n—1)n — 2.

II!s%ls“ cage, the same letters, say a, b,l_ ¢, will cccur no less
‘{h%%lkﬁ times, the groups being as follows:
N J abe, ach, bac, bea, cab, cha.
" {iv) Similarly, P, = nn — 1(n — 2)(n — 3),
7Py = n(n — in — 2)n — 3n — 9),
ete. '
Observe that in each case the last bracket consists of 7 minus

one less than the number of letters taken at a time. ]
Qence, when ¢ letters are taken at a time, the expression
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14. Find the sum of o terms of the series I + 24+ d et
By how much does the sum to infinity exceed the sum
of T terms? '

15. Determine the mumber of years in which & sum of money
will double itself at 5 Per cent per annum compound
interest.

16. The sum of the following series can be found by the sate’
method as that for finding the sum of a geometric geries.
The expression obtained o subtracting contains e

Ittse s dod 4 pppmi O
Find an expression for the sum of 7 terms. £ o
Hence find the sum of ten terms of the following series:
1+6+27+108—.'~405+e{s<}.\

17. Write down the general term of the sepgs?
X g® gt N
T+ T T ol
278 7 ¢{¢

Find the ratio of the nth term to the preceding term,

Under what conditions will $he ratio be less than unity ¢

8. Permutations ang Combinations.

The subject of Termutgtions and Combinations is concerned
with the number of Ways in which & number of things can he
grouped together, grr wbged, or selected from a given set of things.

The distinetion, Eobween Permutations and combinations is a8
follows: X\

In Permutations, a different order of the same things 18 re-
garded as avdifferent arrangement; wherens, in Combinations,
1o regardds paid to order, hut only to the things which constitute
A groupi

For“extmple, if we had two eounters, one red and the other
blua\ oen, placing them together, say one on top of the other,
only one combination is Possible, the position of the red counter

~With respect 16 the hlge being of ne consequnence. Omn the other

hand, there are two permutations possible, namely, one in Whigh
the red connter is above the bine, and the other in which the
blue is above the red.

19. Permutations,

(1) To find the nurber of permutations of n things, taken T
at a time.
This number is usnally dencted by P,
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The n different things are conveniently represented by the
letters of the alphabet, but without restriction a3 t0 number.

Let a, b, ¢, d, eto., represent some of the different things.

Consider the selection of:

{1} One leiter.

Since there are n different lotters, the number of ways in which,

one can be gelected is n; A
Le. P, =mn. \ \)
(i} Two letters. g o

One letter can be selected in 1 ways. Consider ofil#one of
these selections, say the letter @. There are now @A 1) letters
left. A letter to be placed with & can be chosen from ‘the remain-
ing (n — 1) letters in (n — 1) ways. This iz txgefor each of the
n lefters selected first, and, therefore, for all theh letters selected
first thero are n(n — 1) ways of selecting, #b second, and, there-
fore, n(n — 1) ways of seleeting two tbil':\xlgs from n;

ie. Py =mnm>1).

Note.—In these permutations,apy two letters, say o and B,
will cceur twice; onee when a%was first selected and b from the
remaining (n —~ 1) letters, apdionce when b was fiust selected and
@ from the remaining (n ~ 1) letters.

(iii) Three letters. 0N

Two letters can\be"selected in n{n — 1} ways. After each
selection of two, (# — 2) letters will remain., Another letter can
]Je selected from the {(n — 2} letters in (n — 2) ways, and since this
18 true for every one of the nin — 1) selections of two letters,
three lettetaoan be chosen in #wn — 1}{n — 2) ways;

Q" ie. Py =nn— Hn— 2.

N\ S :
‘I’il\%js case, the same letters, say a, b,.¢, will occar no less
¢ t{]a.j:{ 6 times, the groupe being as follows:
\ abe, ach, bac, bea, cab, cba.

(tv) Similatly, P, = nfn — 1)in — 2)(n - 3),
a5 = nin — Dn — n — 3)n —4),
cte., .

Observe that in each case the last bracket consists of 7 minus

one less than the number of letters taken at a time, .
Hence, when r letters are taken at a time, the expreasion ‘
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representing P, will consist of & similar product, the last bracket
of which will contain n minns 7 — 1;

ie. P, =nn —1)n — Ym — S)n — f)..n—7=T)

Le. P =nfn — in — n — S{n — d).tn—r +1). ()

{2) Special eqse. )

To find the number of permutations of n things taken 7.4t
a time.

In this case 7 = n, K

Hence P, = nin — 1)n — 2)n — J..in —n 1y

oFa =0 — Din — (n — Shal) O

This product, the factors of which run doy\ié%b 1, is called

Factorinl n, and is written as either morn! )

A ¢
A Y

ie. P, =nl SOV

(3) In ozder to extend product (i) tOff;’i{E‘ fastorial n, it would be
necessary to multiply it by a prodnés,the factors of which range
from (n — 7}, one less than (n — g\ 1), fo 1;

Lo, by — )L,

7!

It follows that nhP = = {i}

This is a more ec{m?;enient form than that given in equation (i).

L™ .
11 (1) To ﬁnd\the number of combinations of n things taken
r 2t a time (6.
The nurhber of permutations is e
A _ o (m—)!
Now, @8 stated in §10 (i) {ii) and (iii), the samo set of letters
wil,@ec‘ur in more than one permutation, but in different order.
A fact the number of times the same set of lebters will oveur
J¥dthe number of Permutations of r things taken » af a time,

Die. by 2 (i), 71,

In combinations, these #! arrangements count as one com-
bination only, and as this is true for all such sets in the permu-
tations of n things, 7 at a time, we have:

P n!
-nr S L
nCr = ke aG = {n — rilpl?

B B‘g'“oaziiits><2><1 6 -
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_ 1ol 10987
S 6Ix g T 13371

{2) To show that ,C. = (..
The equality is readily established by the following consider-
ation, !
For every combination of 7 things taken from the n things, a
combination of (n — 7} things is left.

(i) 100,

" 1’30‘1' = ﬂwa—-r' "\:\
The equality also follows from the fact that each equals O
n! & "}'g .

A
(3) The following example shows the applicatiéﬁz\ of combina-
tions to problems on probability or chance.
1f 52 cards are dealt to 4 players, what-dsthe chance that a
Player will receive 4 aces? A&
13 cards can be dealt in ;,C;y ways N & these, the number of
times the 4 aces and 9 other cards argidealt, is 440, o
Hence the chance of one playerfrtééeiving 4 aces is ESC—*;,
AN 52V
o480 sals 1
M Zargr 390131 — 4165
o
* \Exgrerse XXVI (5)

i.e. 11 in 4166.

» Ny SPi.l, EPE, s 6 602, 503
2. Thege @re 20 competitors for a first, second or third prize.
N how many ways may the prizes be won?

3“}30“’ many different amounts can be paid out of a till con-

1. Ca]culat&::\“sf;s, sEa

¢\ ‘talning a sovcreign, half-sovereign, crown, half-crown,

e

florin, shilling, sixpence, three-penny plece, penny, and a
balf-penny, if three coins only are to be paid out?
% In how many ways could b playing cards be desalt from &

pack of 5237 How many sete would eontain_card.q of par-
tienlar different numbers, independent of suit?

5. How many words of three letters can be fur).:aed from 6 con-
sonants and 4 vowels, each word to contain one vowel ?
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8. In how many different orders could 5 men be seated round a
cireular table? (Place one man, then select the orders of
the remairning four. If clockwisc and anti-clockwise arrange-
ments are considered alike, halve the result.)

7. How many integers of (a) 3 digits, (b) not more than 3 digits

can be formed with the figures (i) 1 to B, (ii) G to B, each,

figure being used only once in each number?

8. Show that the number of permutations of 5 things tdken)3
at a time when each may ocour any number of tirqed is 5°.
Find the answers to Ex. 7 when each figureunay oceur

any number of times, AN 4

&
9. Show that the total number of combinat-i&n\s of n different
things taken any number at a time is3" — 1. How many
products can be formed from the jefters a, b, ¢, 4¥

AN

S J

12, The Binomial Theorem.*
(1) To find (a + by

That is, to find the product of 1 factors, each of which is (o +b).
This is readily deduced €sdm the theory of combinations.

{i) Clearly, the ﬁ{gt'\terms iz @®, and the last &%,

{ii} The secon isg'o% the kind, qr—1p,

The term is $ormed by selecting one b from the n b’s available
and placing it with the product of the (n — 1) @’s of the brackets
from which\the b is not chosen.

Since,!?he H can be chosen in n ways, there are n such produets,
and\tiiexcﬂoeﬁicient of the term is therefore 7.

'\l{{ term is thus, na®1p,

i) The third term is of the kind a2,
Two b's can be selected from the n b’s in ,,C, ways.

(It does not madter in what order they are chosen.)
The third term is, therefore, ,C, an—2b2.

")

(iv) Bimilarly, the coefficients of the terms following are nCar
wCas nCs, ete., the last being ,C,, which is, of course, 1; this agrees
with the statement in (i},

* Formalated hy Newton,

\
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{v) Bince ,{; =", wo can write the expansion in the form:
n+ by = a* + ,Ca™1h + ﬂﬁga“*zbz + ,Cham 30 + L
G L+ G

i
=g+ nan-th 4 m an2h? +( ?’13)!3! a3+, |

7!
e AP THT b L o
(n— vl \~
\
nn — 1 £\
= g® 1 pat-ih 4+ __(1—2) ar—2h? \ \J

e e e

Observe that #—rh7 i3 the {r +\llth term,

n!
fn = 7! &
(2) The following arc important propht1es of the terms of
the expansion of (2 + b)". ANV
(iy The coefficients of térms eqmd]atant from the beginning

and the end are equal.

Thus, ,C, and ,C,_, are the) coeﬁ:‘tcwnts of the terms @™ *h?
and ¢2h"~2 which are eqmﬂmtanb from the beginning and the
end, andby§ 11 (2),
:w\ ) 2 0»—2
(i) The sum of he “coefficients is 2%

This is fm.md, by putting @ and b each equal to L.

(iif) The gma‘best coefficient.
The coeffieient of the rth term is .0y,
'® L " (* + 1)th term, ,C,,
AN o {r + 2)th term, Cry-
~XFor the coefficient of the (r + 1)th term to be the greatest,
(e must have:

U
nr = 1.
() o >1 and (11) Crer
— n+1l
Frgm (1], ﬂ'_._;:..j__l = 1’ and S _.,2_ o
T+ 1 n—1

From (i),

n~—r>1'- and ;. T> g
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That is, for the coefficient of the (# -+ 1}tk term to be ths

n—1 1
greatest, r must be greater than —5— and less than ; ;

e.g. i1 18 8, 7 must be greater than 3% and less than 41,
Heace, 7 is 4 and the {r + 1)th term the Gth.
The actual cocfficient is (U}, i.e. 70

Exgrcise—Verify this by calculating the neighbonring eo®
efficienta. AN

Ifnis 7, ¥ must be greater than 3 and less than 4; but st
be an lntcrrer and it will be found that hoth values Setisty the
conditions. That i is, the 4th and bth terms have eq ual‘(,oehluents
and the greafest. { <

(3) The expansion of {¢ — b)® is obtained\by éubst-ituting —~b
for b in the expansion of (@ + by". It follows that the two ox-

pansions differ in gigns only. In the cx,pa’!ssmn of (@ — by, the
signs run alternately plug and minug,,

Exgroims XXVI (1)

Wrnite down the exmngi&ﬁé of (1 + a)? and (I — o)™
Find the coefficientiof 25 in the expansion of (2 — 2%
- Find the sum of f:];\ coefficients in the expansion of (@ + )%
. Find the su.t%?sf the coeﬁlments in the expanded forms of
@ + @Pand 2 - a)
- How mdnly terms are thcre in the expansion of (a + b)*?

Which term has the greatest cocfficient, and what is its
sk

6 %xpand (1 + z0, and find the greatest term when £ = 2.

™

H= Lo 1

Cn

AN .
&\ d Revizioxn Exwprcise 111 _
1. Plot the graph of ¥ =(~2z+3) between z= + 3 and y= —4, and use
the graph to find approximately the roots of the equatmn

dx:+4r—11=0.
State your construetion, and give reasons for your jnfercnces.

2. Plot the point =38, y=4, and the straight lne y=2, Draw the Iocﬂ:
of a point which moves so that its distance from the point 3, 4, 1
equal to its perpendicvar dislance from the straight line y=2.

Verify that the cquation fo the locns is y=22%— g+ 2.
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3. A peg top has the form of an equilatoral eone and a hemisphere placed
base to hase. If the diameter of the base of the cone is & find the
volume of the peg top.

4, Show that T o1 = gin z
2 a
5. Given that %:% ;_i= i
3 . atete @
show that (i} pTdel B
... ab=cd ref af+e+e® o \
(i) SO Y O\

Frar i abtedvef b 3
6. A pessenger in a train iravelling at €0 miles per hour obeerves, thab i
takes § soc. to pass & brain 110 yd. long, going in the same di{ﬁ;tiun.
How long would it have taken if the irains had been tragelling in
opposite directions? ¢ {7
¢ the frst teain were 132 yd. long, in what fime ‘w}uld they pass
one another in each case? p .
%. A man puls by £100 ab the beginning of each gehr'to accumulate st
compound interest at 4 per cenf per annutls, 6w that when he has
put by his tenth instalment, he has acmuhted s fund of £1200.
[Asanme {1-04)10 = 1-48.] \J
1 O :
. - bw — 2~ . find the third term.
8, The first two terms of an 4.F. aTe 1/2.‘!?&“1—1- 739 find the
What wonld the third term baitithe numhbers were in 0.7, 1
. & Ry 2
9. T sin® =", show that cos 0t=—— and fen =
o L s @ v ai—at
10. Find how far s aphere of diameter 27 will sink into a conical wme;glm,
of which {1he dcpt}g’“a,og}d the dismeter of the mouth &re each 23",
Find also whq'\volume of the sphere is inside the wine-glass.

N\Y;

o) CHAPTER XXVII

&
,(%N INTRODUCTION TO THE DIFFERENTIAL
N\ AND INTEGRAL CALCULUS*
AN
\* 1. Rafe of Change of Simple Functions,

Consider first a linear function, 1.e. & function the gr

which is a straight line.

Let y be a linear function of z,

¥ = azx + b, a and b being constants.

\ aph of

the genersl relation being

* The pionecrs in this branch of mgthematics were Newbon (1842-1727}

end Leibniz (164651716}



328 RATE OF CHANGE OF SIMPLE FUONCTIONS

Let 2 and y,, and x, and Y, respectively, be simultansous
values of = and y (fig. 1),

Then y changes from Y to Yy, when x changes from Z; to x,
The change in ¢ = x, - Iy, and the change in y = Yo — e

The ratio of the change in ¥ to the change in z is, '%—_—%-
La — X A~
y ¢

ONFir 1
It is alrcady known that, in the cage of the straight-line graph,
this ratio is constant forall values of 2, and z,. Moreover, since
AY,QP is similar tol A Pz, T,
SN
w\.J) P N
which is the $ahgent of the angle 2, TP, i.e. of the angle the graph
makes with-the axis of z, and which wo have seen is & measnre
of thesgradient of the graph.
fs case, the tangent is positive, and this is true even when
the'graph is produced below the axis of x, for then both z and ¥
B negative, and the quotient therefore positive.

a\Y
\ 3

N

" We may say that the quotient gi:-_—gl represents the gradiend
2

at the point (&, and has heen determinedl by taking two values of
@, one ou each side of that for G, and finding the quotient,
Change in ¢
Change in '
When these changes, and therefore the sides of the L Py, aTC
"madl, it s easier to find the quotient from A Pz, T.
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This quotient represents the rate at which y, ie. ax + b,
changes as « is changed, and, in order to understand the full
significance of this, compare two linear graphs passing through P.

In fig. 1, it is seen that, for the graph PR, the change in Y, viz.
QR, when the change tn T i3 (X, — &), is greater than that for the
graph TP, viz. Quy, for the same change in x. The gradient of PR
15 sieeper than that of TP, the difference being

QR - Qyp A
gy T o
This difference iz equal fo

7
<

tan £ QPR — tan £QPy,, e,
and since  LQPR = LXSP, and /QPy, = «KIP,
lo tan/ X8P — tan 2 XTP.

%

By Geometry, extr. LX8P iz grealer t}z{fn\opp intr. 2XTP.

Returning to the relation y = adkb, we know from the
chapter on the lincar graph that the gradient i a.

The rate of change of y, i.e. ax 19, as & changes, 18 therefore a.

The points to remember are; S

(i) Tn the straight-line gtaph the gradient is constant, and
is measured by the tangent of the angle the graph makes with
the axis of . R ]

(i1} The gradie toéf,h_ae graph measures the rate at which ¥
changes with :B,I%}Id in the straightline graph this rate 13
constant. N

2. When tle’ changes are very -small, it is usual to eraploy
special symbols to represent them. Thus a small c_hzmge In &
is repréderited by Sz, and the gorregponding change in y by 8Y-

B2 Greek letter § (d) s not in this case @ multiplier, but when
liweed before another letter, it must be taken to indicate small change
Cin the quontity represented by the letter. Referring to the figure,
) “such @ case PQ represents bz, and Qi By and the triangle FQY»
may be us small as we please.

change in ¥

i
B ipptidun: < el - AU ritten ¢
small change in & is then W 5z

The quotient

5 -
Ify = ax + b, we now know that g% = a, the gradient of the

straight-line graph.
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Exsrcrsy XXVIT (1)

1. Draw a graph representing the distance covered by a moving
body, as shown in the following table:

1 3
’Time{see_) 0}1;‘2‘3;435“5
- o . i - o \\
’Distzmce(ft-.) 0 i 3 ‘ 6 i! 9 ‘ 12 | 15 | 184~

Find the rate of chunge of distance with timé at definite
Instants (say at 14, 2, 31, etc., seconds ‘Lft‘ir time 0, by
taking small intervals containing the insgant and detormin-
change in distance

change in time ,f\\'

ing the quotient

The quotient, as you know;ig\ e velocity of the body.

What do you know of the #olocity in this case?

‘2, Draw the grapls of RN
() 2¢+5 ()2 (i) 5 — 9,
() —2¢,  @Nr-2 (v lz+2

and in each casd determine at various points the rate at
which the valne'ef the expression changes with respect to .

3. What is the gﬁbﬁént of the graph y = Gx + b?
What(thersfore is the rate of the change of y with re-
speet §6, 27

4. Takesghefunction ¥ = 2z + 3, and find the value of i when &
(3,'say, 3. Then increase the valuc of 7 to, say, 3-1, and find

\'\\t’he new value of y.
\ change in ¥
change in &’

Repeat the process with z equal to, say, —4 and ~ 405,
or —3-94.

Comparo the quotients.

Repeat this exercise with other linear functions of .

‘.\': \ Now caleulate the quotient

/N
N
\3

8. Rate of Change of Non-Linear Functions.

When we consider functions which are not linear, the deter-
mination of the rate of change of the function is not so easy.
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The more important functions, other than the linear funetion, of
which we have drawn graphs, are:
(i) y = aa* (p. 202), (i) y = aa? + ¢ (p. 203),
i) y = ax® + bz + ¢ (p. 209), (v) 2* +¥* = a? (p. 226},

(v) ¥y = % + e (p. 155), and
(vi) the trigonometrical functions (p. 269).
¢\

The graphs of these are curves. K

4. Limiting Value of Ratio of Changes, Gradient of Fagent.
Consider the graph of y = z2 and let us find the rate/of change

- of 4 with z at the point for which & is, say, 3 and“y:\therefore 9.

If we change the value of Z to 3B,
y becomes (3:5)2 = 12:2Bp

changeiny 1225 -9
fhen changema 80 ) 63.

N I R

1 A
g

( 3 T
i\ ; 2
a\ Hrainiinnn
OO A/ mmni i
* "' . / BENIEEE
N\ | | AL
- i AR NR SRR
s ~ LA AN RN NN

Py N -

- "o (T 2 3 s X
Fig. Z

If y, and y, are the points on the graph (fig 2) representing
these ;alues gfzm and ¥, %hen &5 is the gradient of the straight
line joining y, and ¥
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Next, change 2 from 3 to 3+4 and # therefore from 9 to (3:4)2 1.0,
to 11-56,

then changeiny 1156 — §

changeinx ~ 34 <3 . o4

Y 18 BOW nearer to 3, and the straight line joining the points has
a gradient of 6-4 as compared with 6-5 previously, The line hdg\
sltered its slope. N

If these calealations are continued for changes in @ of -3,43N1,
the quotients ohtained are 63, 62, 6:1. Now if these areplotted
a3 in fig. 3 againat the changes in z and the peints joined'to make

H HERRAEE I

-
1h
I

o
=

Ouotiznt
|
s [T
|
,l

£

02 Ssilchange in xb
&% Fig. s
8 graph, then if thelgraph is extended backwards to give the
value of the quopient)for the change 0 in z, the result is 6, For
this valae 6, g, hag reached Y in fig. 2, and straight line g, T
has become a{tangent to the curve at Y. The gradiont of this
tangent is6{7;"

Thus, although the triangle 3,Qy, has disappeared, as well as
the ch,a\ng 8 in 2 and ¥, yet the value towards which the quotient
of thé.ohanges steadily approaches {ur tends} can be found from
i€ pradient of the tangent at the point representing the values
88 and y.

() " The reader is reminded that » curve and jts tangent have the
\m ) “same direction and therefore the same gradient at the point of
contact.

These calculations should be made for changes at other values

ny .
of z. At & = 5, for example, the quotient ;}?:;gg: o g T’“l,l .be
found to get mearer and nearer to 10, which we call the limating
value, or limit, of the quotient when the changes become smaller
and smaller without limit. '
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This limiting value is the exact rate of change of y {i.e. 2%) with
respect to © when T is equal to 5.

We have represented small changes in = and y by 8z and &,
and g—g is the corresponding quotient ?—ﬁ%gz li]:yz'
found for y/Sx, by making Sz small, are approximations to the
exact value. To distinguish the final or limiting value of the

quotient, the lettering is changed from g% to %, which should .,

The values

A\
be regarded as a single symbol for the quotient and not a8, "
- consisbing of two terms. It follows that for the graph'of

fl ¢ N
y =i d_g represents tho gradient of the tangent to the-ghrve at

the peint considered, e.g. at x = 3, % = 6. .“‘}\\

N
5. Differentiation, Differential Coeficient, />
All the foregoing can be expressed g].gtéi)’raically, thus:

{i} Find ?{g when iy = 22, Let :.g‘l’:;aind x, be near values of @

and y; and y, the corresponding values of ¥.
Then Yo = zzz"é,nd Y = B°
and the quoticnt, :,\

change ing\'yy = 9 _ % Z &P _ Z, + Ty
change ingd Xy —# Tp— @1 2o
Let the d; e:re\nce between z, and @, be diminished so that they
both appreach the value .

Thqﬁ\\ ) %, + x, tends to 2,
N0 .y _
O Le. 3 = 2.

\ W

) 3

YThis agrecs with the result found by graph, namely, at £ =3
the gradient of the tangent, which represented the rate of change,
was found to he 8.

(ii} Another and a more general method is as follows:
Let 2 change by the small increment 8z, and let 8y be the
resulting change in .
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Then, ¥+ 8y =(z+ 8z)2;
S8y = (x4 B — B
= (2z + 87)3z,
-
and "8$—2$+8$' ~

Now let 8z diminish until the limit 8z =0 is reached,\@hen
{3

8 d;

B_Lé becomes c_g: and 2z + 8z becomes 2z, O
. dy N
1.C. E’L = Zr. '\\

N i
The operation is called DrswmRENTIATION Sand the value of d—g

is called the differential coefficient or detivafive of the funciion
of z. Thus 2z is the differential coefficient of 22, This may be

X

. d
written 7z @) = 2z.

Notice that for 2 = -3, dy = 2 x —3 = —6. This agrees with

the dircction of the graphin fig. 2, for at 2 ~ —3 the gradient is
downwards, and therefore negative. The sign and value of the
gradient should be ex@mined along the curve from left to right.
It will be seen thé®) the gradient on the left is negative, but
diminishes numétieally until the lowest point is roached, where
16 is 0, then oh\the right becomes positive and increases numer-
cally. ” e

MK
6. 'Tiie Quotient g-_

:E‘ht'éymbol 0 =+ 0 is meaningless as it.stands, since any number
afitimes 0 is 0. However, if the noughts have been obtained by

("reducing the numerator and denominator of a fraction according

\

3

to some relation between them until they are less than any
assigned amount, the quotient generally approaches and finally
reaches a definite valne '

#in 3
Bg., from § 5, p. 257, it is seen that Q’IT gets nearer and
nearer to 1 as 8 and sind get nearer and nearer to 0. We express

this by saying that §3§_8 tends to 1 as § tends to 0, or that
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%—-8- -1 as 8§ 0, or that the limit of -S'"IEE, a8 3 tends t0 0,15 1.

The {act that such quotients have a limiting value is the basis
of the caleulus. -

Exercise XX VI (B)

1. Find the values of g—g when 3 = 22 for the following valugs.)y
s,
of z, viz. —86, —4, —1, 0, +1, +4, +6. O

2. What is the gradient of the graph of y = x” atifs lowgfafiioint?

3. If y = az® + b, using the method of exsmplo (i) (p. 333),
show that 8y = @(2x + Sx)dz + bdx, v/

d diazt) | didm)
d that 4 _ - e
and tag ar ax + b a&r f\ &
%. General Formula for the Diﬁel:eﬁf:i&i Coefficient of & Power
of x. N

To find % when ¢ = :L‘"*, )

(i) Let 72 be a positivednteger.
Employing method {1} (p. 353), let , and Z, be near values of 2
and y, and y, the egwesponding values of y.

Then, :.’ Yg = To™
PN/ ¥ ="
By subtraction, Yo — 4 = 3" — &
) N/ 3 I
ands,\,\ changeiny _ =" — &
) change inx &, — 1
P = g1+ v T+ ete. .. +a," L,

“\\\/

) Let the difference between z, and ; diminish 50 thatﬂ:fi,,—» :L‘é
and z; —z. Then each term on the right becomes 2777, an
since there are n terms, the sum is na™ .

N

change ?n i g
changemn &

ie. % =nz
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{ii) Let n be a positive fraction P-, so that ¥y = 227 wwhere
P and g are positive integers. q
Then y? = a%,
and, proceeding as in (i),
' — T = -yt
which gives at once \
Yo — Y TP T P L+ 9219—1{\~

Ty — & YU Yy T L T g
2 1 Y Yol y{}

N

. G part N\ ¢
g T g O
_p a1 ¢
g pPe—1ie \,
p_art \\\\
B q m(?‘ﬁf?lx?} ’
~ P iy
L
s N
- ngy’
- . 3 \5
the same result as in (i). R\ ’
(iii) Let 7 be a negat@fé integer or fraction, say n = — ",
where m iz positive. »
. . .,1‘:(\
i\
or L X7
4
N1
o :;?-;w‘— E = ‘T’Rm - ‘T:lms
Oy
\"d - -
\'\\— 27!9?11__1 = (xp — )"l 4+ R A T T N 1.
A\ oy —
%;_—% = = Hath{nm + L ),
dy
dr — T YHmzT)
Tl
T T
= —qpp—l
= fn‘xﬂ—-l’

ag before,
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Hence in all cases,
d 1
ax {xn} = gL,
If y = ax®, where @ is a constant, clearly the above procesa

will give gz = anarL,

Exavrrr 1.—If y = 322, ¢ being 8 and n, 2, O
R
then % = 3x 2 = 6. '\}
A\ 3
Exampir 1—If y = 3z72 = :o%, o
z? \6‘:\
. _ dy IR\, '\
then, stneenr — 1 = —3, dr 3x -2 o_\\%
ExampiE fit~If y = 3va = 3z, \V
{.‘ ‘v; 3
then gg =85 X %x(&"-é)}‘ =w2p—t or ST

L g

»:
NS
R
PR\
L Q2

8. Area, Integration. ::’.;‘
Let CPQD (fig. 4) be ‘tée g;aph of a funetion f{x);
04 = a,'{é&f{a); OM = z, MP = f{z).

¢ \ 4 .

.\zs.} 5 QT
I R BN

v ol & MN B *

Fig. 4

Lot AC be fixed, MP variable, and let A(z) be the measure of the
atea AMPO. A(z) is therefore s function of &, which has the value
0 when z = q.
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. .. dA . . .
We obtain the derivative g 1 the usual way by finding the
fimit, when 3% — 0, of the fraction
Alx + 82) — A

If 8z = MN, Az + 8z) = area ANQC, and

Alx + 8z) — A(x) = area MNQP. \{:\

'S
The latter area is the sum of the rectangle MNRF)MOf ares
Y8z or f(x)dx, and the small curvilinear triangle PRQ. But
PRQ is less than the rectangle PRQS, the ares of )\v}geh 8 3z . RQ.

N

Thus o
Al + 82) — Alw) _ f{o) 8z PRQ
S a 82 .
CO PRQ
B f(a:}— N
PRQ B . 2~ »
and T less than RQ, Whlcl.l&—:- 0 when 8z — 0.

<. the limit of A@ T SLFM@) 5y ;0
<
N dA
A @ TS
ExamrLy i.T\PS}1d the ares between the curve y = 2%, the
axis of x, and the ordinates at z = 1, & = 4.
\<&

O dA{r)
Here, AN haskin Lid Y.
N 2 dz

?.:Q}t &‘jc(%xa] = 72,
En\’.’: - d — 2t — .
\»}« . &{A(a:) 1z } 0:

o A@) ~ a8 is constant, or
Alx) = a3 + Q.

To find C, use the fact that A{x) = 0, when = = 1.

SO0=3+CorC= -4
SOAE) = Lt - &
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This is the area A{z) from the ordinate stz = I to the ordinate
at 2. To find the area up to the ordinate at x = 4, put x = 4.

. Area required ~ 3 % 4% — ;= 21,

{You can now prove the result stated at the end of section b,
Chap. XXIIL)

In the above process, we had to find a function which had a- <
given derivative. The derivative of a function F(z) is usually |

denoted by F'{x), i.e. if \)
z = Fz), O
then _(i% — F((J’,)’ .“’f "‘Z
dx R4

To find an area we have to find F(z) when we.are given F'(x).

Exawprw ii—To find the area betweepjthe curve ¥ = f'(z)
the axis of , and the ordinates at x Tdalid = b.

dA(z) O

H — £ -

ore ) ar f@)i

so that, asin Bx.i,  Afz) =) + C.
But é.{aj”= 0,

:"'.",\ 0 =f(&} + C,
\\"”A(&?) = fiz) —fla).
Aten required = A(B)
NO = f®) — f@-

9. In figy4, clearly we might divide the whole area into little

strips Jike MNQP. Suppose for simplicity that 3z has the same

valueder each of those strips, say 8z = A. )

_«Bach strip can be divided into & rectangle and 8 triangle, as
¢ittig. 4. The sum of the triangular areas

X

4 = 1h % sum of their heights
= 1h(BD — AC), which >0 when h— 0.

N

The sum of the rectangles is
hif(a) +fla+hy+fla+2m)+ ... tf0- By . (D

Hence the limiting value of the sum (T}, when k- 0, ig the area
ABDC under the curve.
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If then F(x) is & function such that J(x) = F'(z), we see, a5 in
Ex. (ii) of last section, that the limit, when b — 0, of the sum

hift@)+fla+h)+fla+2h)+ ...+ fb— k)] m
is B(b) — F(a). f -

This is a very important result, which is used in all parts oi\
mathematics, both pure and applied. (Comparc Chap. XX
section 1.} O\

1t will be noticed that in (II) the sum in { } becomes gréateér
and greater without lLimit—or hecomes infinite—wheh ki — 0
The product on the left of (I) has therefore the foxtp 0 X o
and though this symbol is meaningless by itself, o sse that it
may have a definite finite value when it is conneatedl with a Limit-
ing process. Compare section 6. \V

We may write the result (IT), just foun{ih 12 the form:

a=b AN
Limit when 8z — 0 of = J@)yox= F(b) — (Fa).

X=a NN

The notation regularly used io’g'ﬁhe expression on the left is
s\
Sz,
The sign f » oTiginally s lc.mg s, is called the wnfegral sign, and

) ~
f fx)de is called {hﬁeﬁnite integral of f(x) with respect to 7,

from ¢ to b; @and b are called the limits of the integral.

We may alge have an indefinite integral of fiz) with respect
to &, with Ag'imits specified such as @, 6. The indefinite integral
is written simply

W have seen that if T(x) is a function whose derivative 8
(), then
~O [flx)dz = Fz) + C,
3
\ when O is a constant. .
The process of finding an integral is called INTEGRATION;
while the function f() is found from F(x) by differentiation, the
function F(z} is found from f(z) by integration. Integration and
differentiation are therefore © inverse ” processes.
. It may be noted here that a given function can always be
differentiated, but it cannot slways be integrated. To find in-



CALCULUS 341

definite integrals, we can, in fact, only work bacloward from known
derivatives. For example:

. d{x®) . . 1
since vy = 3z=, - _[Ezdél’-ﬂ:,§$s+0,
d 7T
and since —SSE}- =ner1,  c, frtlde = %3}”" + C.
10. Differentiation of sina, cos x, and tanx. A
(i) y = sina. W\

TLet 7 he increased by 8z and let 8y be the increase in y,‘then
y + &y = sin(z -+ &z), PN\ 3
and ", Sy = sin(x + &z) — sing A\
= 2cos(z + +57) sin ¥ NNV (xix, p. 279)

b ainddx, \’
s = cosfe 152) 18%:6,\

"4

sinddx

Now when &x -0, cos(x + %33}]——-)-00333 and Tox -1,
provided & ig the number of radiang. \in the angle.

Since oy becomes dy we hwé, therefore
o daz’
ﬁzf

<~ gz = cos%,
\i ‘d(S‘lﬂ ) = QOSX.

Since cosz,5 sin (=2 + a:), this result may be stated in the form

‘\.

,j\:~7 d (31::&) = gin(rf2 + T},

'\
which wieans that the gradient of the graph of sinz at any value
of% 18 given by the value of the ordinate at the point representing
'90 farther along the axis of Z.
D) O Similarly, dsmim/2 T 1) (Ef ) sin{m (2 + (/2 + 2]}
1t follows at once, since sin{x/2 + ¥} = c0s%, that if:

(i} ¥ = cosx,

dy d
then il

sin(xf2 + ) = sin (m + &} = —siT,

deosx _

ie. T

—sinx.
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It follows that,

since cisé;_a:) = GOS8, s Jeoszdr = sing + C,
and singe  H°T) _ —sing, . [sinzdz = —eosz + C.
ExamrLEs. N\
(1) At z = 30°, %i;'—”’c = cos = c0s80° = -‘;—3 = 'Szﬁﬁ\f\’f‘“.}'
\J

80° a0°
(2) f ecoszdr = |sinz + C] = 5in30° — sinQ=\f.
A o N\

. deosx
(3) At z = 30°, B i

an® a0®

@ [ sinzds = [ -cosz + €] = £08s30° — (=cos0)
i} LH] _ »
= —866 + 1 =18k,

(iii) ¥ = tanz.
Proceeding as before,

/
"

TN Y
s""“
h § g

[
N

8y = tan(z + S;Lj);b—“tanx

_ tang g-"tanax ot
1 —fandy tana nx

N\

_ AR + tanSe — tanz + tandz tanle

O 1 - fandz tanx

o N/

(since Sz i3 :Btéall we can write 8z for tan 8x)

G _ 3z + 8z tan2x

& _ oz 1 or tan’z

,\\i”" 1 — 8z tanz ’
;'1;\ . S_y 1+ tanfi
ONY 8z 1~ §rtanx

T odr
The corresponding integra,

*Bince, in all theze formulm

<\’ In the limit when 8z becomes 0, 8z tanz = 0.

d
1+ tan®x = gecr.

1is [sec?zdr = tanz + C.

of difforentiation and infegration, molﬂ

messured in radians, we ought strictly to write 2 = /6 instead of z = 3 8
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11. In some cases differential coefficients can be deduced by
Geometry.

ExawrLE: gy = v o2 — 2%

Since 22 - y® = a2, the graph is the upper half of the circam-
ference of a cirele, the centre of which is the origin and the radius
a4 (fig. 5).

I Y4 \\
/// ™K 5 \ O
/ N
/ Ay \\\\ »‘.’\"\7
Q oz Q NI
:l\ i |0 a1 |2 _ k] fl-\\:)(
. \\ _ 3‘//

Wi s

Take any point P,'qci’-o\dinates , , on the circumference, and
through it draw a tahgent PT, cutting the axis of z at T.

Then the gradient of the graph at Pis Tg'

At P in the héme, the gradient is negative.
Now tr\i*é?}g“fc PQT is similar to triangle OQP; therefore

N QP _Q0 -~z
\ T QP y ver—af
\::}'Hence, i y=vat —
dy __—x T gy = vETTHC
i~ Vg fﬁz @V

Exurciss XX VII {C)

1. Find the diffcrential cosfficients of Sinif, cosz, and tane when
x is 0°, 30°, 45°, 60°, 90° and 1207 "
(28}
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. Draw graphs illustrating that (i) [ade = ax -+ C; (i) [z2de
= {23 + C.

3. Find the area bounded by the graph of 23 fromz = Gtox = 10,

and from x = 2 to & = 10.

¢, Find:
45° B L pee
(i) j‘; singde; (i) fueosxdx, (iii) ﬁfmﬂh?, £\
60" 45° A
iv coszdr; v sec?rdr. ¢\
() fos ) [,z
- Draw the graph of y = gdnx from £ =0 to x = 27+radians,
and directly below, using the same scale,{th8 graph of

[ 4

d . . +£7) d
o S, Le. cosz, and below that th(.: grdph of i

For what values of 2 is the gradient\D\i each graph?

6. Find the area bounded by the sine, m(ﬁph from (i) & =0 to
T = 45" (i) from x = 30° tg\ﬁﬁ" {ili) from z=0to
T = 90°

7. Find d— when y = v'25 ~ & When 2 has the following values:

(i) -5—3 (1) +4; (110 ';I:5 {iv) 0.
SBde

8. Find the value of L a® — 7 when & = 5.

9. Show that | te@Pdr ~ tanz — .

10. Bhow thab -a\Qd;—:B = cos{dx + z).

12. Su@yand Difference, Product and Quotient of Functions.
} ﬁS‘um and daﬁere?we.
(het J =% + v — w, where u, v, w are functions of z. To

A ﬁ:ad
a\

Y

Leb u, v, w and ¥ inerease by Su, Sv, Sw, Sy when & increases
by &x.
Sy du + v — dw,
d 3y . S’U _dw
an Sz 5z " 5z’
ay _ du d,v dw R |
dr " de T de  dz
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;T '
(3) Similarly, %(ay) = @Ef:}" if @ is constant. . . . (II)

{3) Product.
Let i — uv, t and v being functions of x (e.g. ¥ = 2*am).

To find 7 @Y

Lot u, v and 4 increase to (v + Su), {v + &) and (y + Sy)
respectively when & is increased by 3z. \,, \

Then W + &) = @+ ) + %) O

—up + vdu + (u + du)dy, ("s
Subtract ¥ = uv. - iy :\%"
S oy = fJSu. + (u + S\
Sy _ R
and Sz v Sz g (u + Suzs
Sy
When 8z 0, 8u also—> G, and :u + Sru becomes #%; 3.0 3

Su dy
and % become respectively d&" {éx a.nd ar

aiy )

Then - PR
¥ &
Exsmerz L= \=\:1:2 sin.
\ﬁy . m@@ zﬁsin_ai)
:,\w. dx
\x\, = ¢ ginz + 2* cosL.
) tFﬁAMPLE il.—y = sin2z
\ u\' = 2 8in® cosk.
v dy d sin d cos
ot 2(c S r + ginx p
= costx — &in*X)
= 2 cos 2.

The eorresponding integral is [ cos 9zdx = §sin2z + C.
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(4} Quotient.
-
Let Y= 5!

_pou—ud
T e F du) "
Dividing by 8z,
du B 4

sz wiv + o) \\\
Proceeding to the limit, since (v + D)) ecomes v

PR
du ﬁ\dy

L

d_y = ;‘_:E “ e s
‘sq
0\‘
Examerr 1, .‘}‘“
72 NS

ot %i%‘
dy (%% sine — 22 cosz
Ei&\-__________

sindx
EXAMPLE ifn
P\ sinz | ;
=—— -, Le.
:’\““ K cosz’ 1 an:,
V V
O d sinx . dcosz
<\ dy 08T g — sinz —dr
\ e -
A\ dx cos2p
X 11 2
4] 't M
" s:r—l—sm'z::m_l__:sech‘
coslx coss L

The corresponding integral is,
Jsec?zde = tanz + C,
and sinee sec?z = 1 + tan?zr,
Jtan*zdz

f

tanzx — jdx
= tangy — =x.

IV
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ExaMpLE iil.

1
¥=
dy 0-1 1 _ .
_!' xﬂ :_E_ 33.

(5) Other useful forms of results (FIT) and (IV) are obtained
by dividing (III) by y = uw, and (IV) by y = % .
From (ILI}, if ¥ = uw, AN\
W

Qli—t
glg
3
2| et
S

1 d
)
From (IV), il

O

_Lid e s
v d \\o

pro d Yepéan be found by (V).

G
NS

]

BE IE B
/s
N

@2 | =
|
%l%

The derivative of any continued
Thus, if y =u . 0. w—-(uv)w

then 1 Eiy 1_ d(u’v)

or

--.—:-:E—}-—-}—etc....{nberms)

WY, dy _m o nat
S .

-4
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Exurcise XXVIT (p)

Differentiate the following, using as many forms ag you can.

sing T bl cos
= T i 5o
1. z 2. sinp o cotx. 4 cosz O @
6 k 7. kxr 8. ain? 9 E 10 !
. g . . . Ainfx, . coslx, CTE A
11. 2%sinz.  12. zsinz cosx. 13. sineg, 14, coftite)
« \/
13. Function of a Funetion. !

. W

The funetion sin(z?), for example, is the sine/ot of  itself
but of 22, which iz a function of . The deri;{ﬁ.ﬁh%’ of a function
like sin{z?) is easily found as follows. \4

Let Y= 16, 0
where z = F{r'ff):.'\:'

In the above example, y = sinZ) Yehere 2 = 2.

Let 2 beeome = -+ 8z; then z betomes z + §z, since 7 = F(z);
and i becomes ¥ + 8y, since 'y~3=~f {z).

Now we always have, by.dtiple algebra,

ey 5

da: A
Take the limit Qij.;}th sides when §x — 0,
dy dy dz

S S a—a_dz'

AW

Simila;&y}?éﬁnce % b gg =1, we find
A&

O dr dy
Q dydz "
N dz  _ pdy
o™ a5~ Wi
\. BxamrLE i—y = ain (7).
Here ¥ = sinz, where z = 27,
?i_g = 083} g; = 2.
d

Eg=cosz ® 2

= 2r eos(2?).
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Exampre il.—y = sin 2z,

Here # = sinz, where 2 = 2r.
dy dy dz
" dz dx
= goax X 2
= 2 ecos 2.
Bimilarly, if y = sinm,
dy O
dz — T cosm. : o\
AR
Exaxers iii—y = v(z — 3z + 2). o\
Here ¥ = vz = g8, where N
z=ua%— 32+ 2 \V
dy dy dz NV
de  dz dz \ WV
= lsH(2z_ -~3)‘
-
=3 «/(ma 3m Y
FxaMrPLE iv‘—Deri\;a\tiéc of y7, y being a function of 2
Let z = gm, \ ‘
SO ds_ dsdy
P dr ~ dy dz
O dy
»\g, = py"1 i
whxr-h\% be found when y iteelf is given.

d
{}JXAMPLL v.—~If 4 = daz, find o oY

v Take the derivative of both sides w1th respect to &
Then, by example {iv),

2 g; sa,

dy 2 \/_@
dz = ;,} Tavar Yz
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72 .
Examrre vi—If % = —k¥r,
prove that
d:r)2
CINT | fezpe
( i T3y
is independent of ¢. O
Differentiate with respect to 7, obtaining 2 g dx — 280 &
@t B “5}1;
and subatitute, o\
3 \",
Exzrose XXVIT (x) ,~,'\N"~

24

o) %
Using relation gg ?z! gj in Exelc:zseb N\ 0’6, find dy

1.y = (2z — 3)% putting z = 2 — 3.0,’\

{

2.y = (3 + 2z — 3. O
3.y = v (2® — 1), putting 5 = 2582‘— 1.
4, Yy = ’\/(12 — a2, .::j"‘
1 PN\

SYTV@S Q)
6. y = sin®x, y = sm%x = cos .

dy
7. Find E&; Whe%\,

() yz =a’ + 78, (iv) ¢* = a® — 22

. I 2
JA 3)9)— Saar. My =3 -5

(vi} y = taniz.

\@) 5 3;;= 1.

Q) ‘14 Power Series.

O\ ,
"\ We have scen (p. 344) that a findte sum, such as
A Yy=a+brt+e+.., + kv
zan be differentiated term by term, so that
dy

e = 2 Lo oqit—1
dp =0t 2o+ nkz
It does not follow that the derivative of every function g ”3’?}?
by & series having an nfimite numirer of terms can be obtczmewr
this way. There is one very important typo of series, howeve
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for which differentiation term by term is possible, viz, convergent
power series. _

The simplest example of a convergent power series iz the
geometrical progression

y=l+ztat-a?+...adw.

We know (p. 510} that this series is convergent if & lies between

—1 and -1, these values themselves being excluded, and in fa'&f“\'

the sum is I i . Now it is a fact—which we may state Wit{igut ”
proof—that in this case we have N
ﬁ—g — 149+ 822+ .. adogs

Exawpre —Find the sum of the series qu@itten. We have

S

N\
e

¥=1=2
As in last section, put 1 — a:~§.’:’{:.'} Soy=rt
dy O &z
de dz dz

SO = (-
\'\\,l B 1 .
O it —zy
Thercfc?;'g D S 2+ S+ ... = a= ol

e i i ight now dif-

This‘ean be verified by ordinary algebra. We mig

ferﬂxési‘a?te again, and thus find a series for (1 — )%, and so on.
..gﬁ;fﬁpare section 21, p. 359, on the PBinomial Theorem.

“\V

3

~ 15. The Exponential Series.
Consider the power series

g =+ brt ot de et + . Ed)

Thig gives

Wy g 9+ 3da + des® T 5 F -
dx ' 1z*

{6257

4
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By pairing the terms, it is seen that the series for dy;’dcc will
equal the series for Y, provided b = @, 2c = 4, 3d = ¢, le =g

£l
and =0 on.

Letq =1, thenb =1,

and ¢ = N
e 1 \
LI Sl i a1t O\
\
e:ﬁ_z___]'_____]‘ .\"}
17193707 A
"'\'n
at xR g \:’\
then, differentiating, x\~
dy 2r | 3z (A% bas
-ttt T
&N
B 3
& T xt
=ltzhgy+g+5+--0 .« .. (D

“§ .y
'{:}\ Le, v

The series fou\% is a function whose rate of change 1z equal to
the functionsitself, Tt is known 25 the exponential function.

N\’ 1 . ogm .

The nt\h'term is =) and the next term is = The ratio

ol IR LI n-1 o :

of t@)iﬁt-er to the former is ::T' / (n—x-——l)’ = and for any value

’q:[\':r:\ this can be made as small as we please by making n large

enough—that is, by taking a large enough number of terms.

\.J Also the ratio becomes logs a3 7 increases. 'The series, beginning

7 ab g:i:, will then be less than

S @ )

that is, less than el
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The value of the series when 2 is 1 is always denoted by the
letter €, and can be caleulated to any desired place of decimals:

1 -1 1 1
e—1+1+2—!+3—1+g+5—1+...
= 2.5
-166666 . . .
041666 . . . A
008333 . . . R
001388 . .. & W
000198 . .. N
000024 . . . &
000002 . . . 'S
2-71827F \
= 271828 to five places of 'rlqoihmls.
. N
16. Product of two exponential serigs,~’
If we take the series in x, and giultiply it by the series in 7,
we get the series in {Z + ). &\
Carry out the multiplication{with & few terms and arrange the
resuiting terms according “tg.&égree, thus:

g a0 2 B )
(1-E-x+%+,\~3—i}...)x(1+z+§+§+...

P g2 R v z?)
=1+ {x+ z).,%.(% A1z + Ei) + (§ + g0 +gr Tyt
¢/ * . ’ : k

A\ 2 3
=1 +60% ) + (x 2‘12)2 P ;Iz) +.

Witk the help of the Binomisl Theotem, it can easily be sllllov:n
hat'the law suggested by these early terms i3 general, 8o ths

\; i 2 u®
\ (11‘-1:+--—+...)><(1+z+-2—|+...)

2! ) (1)
+ "
+@T*-"J

: x+ 5
=1+(&:+z)+(—21)+...

: xk
I, then, we denote the fumction 1 + &+ 3 4 ... by exp.
(x), we have -
exp. {z) . exp. (z) = €XPp- (z + 2).
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Thig is exactly like the Index Law,
a® X gF = gota,

and we can prove in fact that eXp. (T} = e®, where ¢ is the number

2-7T1828 . . ., just found, and 2 is any integer or fraction, positive
or negative. N\
. a? a8
Hence e =14+ x4+ — - )¢

iprrenT o o O
O
The series for e% is tme for all values of 2. For ‘exarple, on
changing x into —z, RO
% =] — + T2 $3 n '\\
== TTi2"1.98 X

7

Also, as we have already scen (section,{ﬁ);,

d _ ’\'s.
2= 2

We can now express the Zthpewer of any positive number @
88 & power series 1n . We figdf express 4 as a power of e, viz.
,:ﬁ = e]ngga;
this, in fact, is simply the definition of loga to basc e.
s \J ’
Then \\"' a% = (elugsa)m
£\ = ptlogem,

In the #xponential series, change  into z log,a. Thus

x:\"’ I 2
O a*=1+aloga+ ( IOg‘fZa)
,\\~ :

j}h’he series for the zth power of a number is therofore simplest
("ywhen the number is ¢, This is the basis of the great importance
«Q“'of € in higher mathematies, _
Logarithms to base e are called naiural logarithms, also
Napierian logarithms, after John Napier of Merchiston (1550-1617),
to distingnish them from common logarithms to base 10.

Exampre i—Find log,10 from tables of common loga.
Let log, 10 = 2. ’
et =10,
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Take comimon loge. .-, zloge =1,

1 1

T = Toggee  logg 27183
- 4—;4§ = 2-3026.
Examrre ii.—Find log;o N from logs to base e. .
We have N = glogeN, ‘E’\ K

L 3
3
. Y

Take logs to base 10. ,\
. - 22>
. logyg N = log, N x logge. &\ )
. . 1 _ N
But, ag in Ex. (i), log,ee = Tog, 10 . ; N
Ogs ;\ d
g.,TQ'

We shall prove below (p. 362} thatJDgB to base ¢ can be found
from a power series. N

*, log N =

1
1%, —- ==,
? dxloggx x

. If 4
then T
&~ . g_:c
Q‘.} " y
O
Thug by“&rtlcle 13)
AN dy 1 1
\ dr " et
e& atated

dx

Vv Thus also = log.x + C.

This supplies the missing case in the result,

f;t?dﬁl“ ¥1

which fails when 1 = —1.
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18. Derivative of an Inverse Function.

Since, when & = ¢, we have Y = log, &, the exponential fune-
tion and the logarithmie funetion to base ¢ are called inverse
functions to each other. We sce by the last example that we can
always find the derivative of an ; nverse function when we know™\
the derivative of the dircet function itself, Very important, ek
amples are the inverse functions sin—12 and tan~lz, i.e. the dnples

(in radians) whose sine is , or whoae tan iz 2, £\
Let i = sin—z, :N‘:"
d:: = siny, ’.M:\’(."
dy = cosy (PN3IT)
- v
L&
TN
dr \y1 = g2
R 2P L
or ax (smilfi“: Vgt
Again, AN et y = tan-1z.
0" oz = tany
N\ ’
. ,\ . ﬁ%; = gec’y  (p. S42).
O Ldy _ 1
»" T dr T secy
O T
A a4 . 1
Q i dz (807 %) = i,

There are many angles whose sine has a given value . To

prevent arabiguity, it is always understood that sin-lz means
. . . e . .

the angie (in radiang) between — g and + 5, whose sine is 2.

V. . : . ki L7

Similarly, tan—1z is always taken to lie hetween — 9 and T3

Cos1z sometimes occurs; it lies between G and .
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These formulx for the derivatives of sinlz and tan72 are
chiefly usefn] in integration, where they are of great importance.

Thus: i
fﬁ% = ginx + C.
dx
= tan-lx + C.
2 N
tre &
: . AN\ ¥
19. Hyperbolic Functions. . Q

-,

o
The funetion %—-— is named coshz, and is positivedt f‘or Both

1 ~\‘
positive and negative values of & since 6% = 5.« N}
L J— e—a}

and may be either pgsitive or negative. \~
Verify that, O N\
(i) coshzx -+ a;m]ia: = &%,

(i) coshs: —”smh:c = g%,

{111 coshzﬁrw— ginh?z = L

The fanction - is named sinhz (psqnounced shinez),

The quotlcnt — ¢~1\caﬂed tanhz (pronounced tank ) and

e'.t — e—.‘l}
equals eaTe_z \
N/

These funet\:-ﬁs are known as the hyperbolic functions.

& d
Vem@' that -= goghz = sinhz
a\ d b
pand -+ ginhax = cosh®,
“\.J dr

.
V' and statc the corresponding integrals.

20. Exiensions.
() If y = ¢*=,  being a constant, then

dy = Jrphd = .
E’IC = ke ky



-
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This is easily confirmed by writing e% in the series form
fx)? ) -y .

I + kx + (21) + ete., and differentiating with respect to .
An application of this tmportant relation is the cage in which

the rate of change is proportional at every instant to the value

of the thing changing, as, for example, in some forms of growil

and leakage, If is the value of the thing and z the time offhe

dy

change, then dr = ky. The above telation states that to}h'ﬁjebn-
dition is satisfied if 7 ~ gbe, O
1 AN
i i i = _ pk < 3
The integral is f e L€+ G

40
(i) Any number (N) can he expressed ag a"p}“*er of e, simply
from the definition of a logarithm: thus:

If §¥=No = gﬂogN)w’ then g_g ﬁibg NeflogNje {log N)y.

The integral is f Negp = % + .

(i) Zogarithmio Differemtiation,

o\
= Wl . ..o :
Ity = o, | \\a.ll functions of ,

then logy ={ogu, + loguty + ete. — logw, — log, — ete.
Lol duy, 1 au, 1ds, 1 v,
%@~= ﬂl__aE “|"u—23$' + ete, __?);R»T_—@‘_zai efc.,

leiQh’fé in agreement with Previous considerations {p, 347).

N, !

dx’

logy = Hlog(2x — 8) — log(2z + 33,
lay 1 2 2 ) _ 6
‘ydr 3|23 s (2T = 3)(2% + 3y’

dg 8 6

oz - gEr T g XY= (2 —3)%2x + 35
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Exameen 2.—If i = 4= sinly,
logy = —§x% + log sin2z.

Ldy _ _, 4 2coske
gde~ %7 Tsinzz
- ii = —ge~ie® gin2x 1+ e~ conlz.
(iv) Integration by Substitution. e N
L . dy : O
Beginning with | -2 = logy: ™
= g f Y N
1. Let 4 = sinz,  then dy = coszdx ,';:~
cosxdx . . \:”\.\
and ] ——— =logsinz; \y/
sin
dr NV,
ie. fcotxdx or fm‘?\l@} I
2. Similarly, if y ~ cosz, W
sinz dx A\ _
f cos® }l?g‘m” = log seed,
ie. vEta:i{‘a;d'z: = log secit.
. 1.0 1 _ Reecilz
8. Sinee qing\_ Janlzcosyr  taniz’
NS ditanda
and N _(-dw—y) = L sec? 3%,
> dx ditanix)
\Y - = DR = ten 4.
) ’~\/ *rJ ging .[ taniz log tan:
’.\\ -
\i “\‘.;;‘4. Since cosit = &n (§ + $) ,
) dz dx T
/ - = log tand(s T T)-
CORE fsin(ﬂ/i! + ) log %(2 )

2l. The Binomial Theorem. : )
_The expansion of (} + x)® can be established in & manner
similar to that used for the exponential series. If n is & positive

integer, the first term is obviously 1 and the last 2™
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Let (1+a:)“=1+ax+b:c2+a1r;3+...+$“;

then by differentiation
w1+t =g + 9y 4+ dex? -, ..,

To be true for all values of 2 it must be true for x = 0, N
Putting c=0 Ko\
‘s O
continning the differentiation, ¢ “«
= D0+ 22 = 95 £ 9. 300 f{f@
Tor & = g,
AR = 1) = 2 from which § @*—”—;i)
Similady S
_ ??f_(’f_%_j_IB}r(n - 2), . ?2“(?2«— 1){?14;— 2}(”?_'“:‘_)‘_) L
’ )

Tltar=1+ m;g}@‘_;_l)mz + ”(_”:QL—%S

A A

If —x1s subsﬁ{@bed for &, then

P _nn—Din -2,
P \s ’
'\w + .0 Lan,

thew \\gp, ok zn depending on whether n iz even or odd.
, J*\ar the expansion of & + g, we have:
O’\ “ y %
"\)“ x-!—y“;a:"(l +£)

_ an — 1) 52 ¥
._;r,ﬂ(l-i—n + - o7 :£:2+"'+2U"”

(% ST = g 73 nlon 1y %(3'32?_1) e “_y‘ .Y

Since (y + o) = {x + )=,
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it follows that the coefficients of terms equidistant from the ends
of the cxpansion are the game.
E.g., the cocficients of 2Py and xy*™-Y are both n,

22, More Expansions in Power Series.
1, Cosx and sinx. .
The method just used for {1 + ) can be applied to cosx and

sina. ’.\:\~
Let cosx=a+brt+oer+dettest+... . a\
By successive differentiation ("?’«,
~sinz = b + 2ex+ 8dx*+ der® H,00x,
— cosx = 9 +2. .30z + 3.46%CKN ..,
-+ ging = 2.3d+2.3.4qx+...,
+ cosx = + ?:.:Me-]-... .
Pat 2 = 0 in these equations. O
“l=a; 0=0b; —1=2¢; 04y +1=2.3.4¢... .
LI
Thus, cosw=1— g kg gt (D
In the same way, or by differentiation of (I),
W 2% &t
iﬂp%ﬁ&“—gﬁ-y A 1 4]

The relationshiphof these expansions to that of ¢ (p. 354) will
be noticed. Tlaterelationship is very imporfant, t_:oth n pure
and in applitd“mathematios—in Eleetrical Bngineenng, for
example. Ljké’the series for %, the series for cosT and sinZ are
convergilft\:fbr all values of .

If wenyvrite the symbol ¢ for v/ —1, we see that
W\ i o %zt it®
,,,\;\’ ea¢=1+1$+1.._2+i-:-§—.—3+...
\or ¢ = gosz 4+ { gink. (1n
Similarly, gi® = gosx — 1 sinik.
. et e
.. COBE = 3 .. (Iv]

Bim . e-—:'z
BIRE = 97 -
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If we tried to apply the above method #o tanz, we should
soon find ourselves in diffiouities, But we can find the series for
tanz by ordinary algebraic division, since

sinz

tang = COS

=TT S — .
NI R s (\)
TERR ARt O
2. Logarithms (see p. 355), “~ ™
(Note—Excopt in puzely arithmetical work, “logarithms In
mathematics aze always supposed taken tockabe e. If thers i
any possibility of doult, we can of course. ‘write log,z.) We
need not try to find a power serios for dag, since logQ is not a
finite number, In fact, if Nig a large fuositive number,

logil—r = LN,

0T, a8 a limit, long%'—oo.

With log(1 + 2} there ig .}Eo’djﬂculty. We can here use a new
ncthad, which is oftemusefu],

Put i”y\= log{1+ );
N 1
“::‘.“ dr 1+ gz
N/ =l-zx+a2—gs+ |

provigi({(’l.\uc“ is numerically less than 1, for convergenee,
Then; by integration,
N\

A\ Yy=@— qo+ a2 — .. )
"\ s log(d TER=x—fa? + g8 Ly ., (V)
' ifg? < 1. No constant is needed, for both sides are 0 when z = 0.

Change o t0 —g, Then, if 72 < 1,

Sodog(l — gy = 5 — 32— fxt — et — ... (V])

Suppose we wish 1o find log, 2. We might, as an extreme case,
tutz = 1in (V). 'The equation

log,2=1~14+3 -1+,
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is correct, but very unsuitable for caloulation. A better method
is: put ® = fin (VI), Then, since Jogl = —log?2,

1 1 1
' log,2 =1+ 2—+J§23+124+.... . (VID

(Prove from this that log,2 = -6931...)
Next, we can get log, 3, by putting & = § in {(VI). Thus,
1 1 1 P 4 t\t\'
log,3 —log,2 =§ + 4z +igp timt ... ..(‘{I:/II) )

~

". log,3 = 1-0986. \ N\

We can now find the very impartant number log;3 lb* 1)}’ putting
& =5 in {VI}. For this gives
Y

log, 10 — 2log,8 = 1 + ‘}102« Ehgt-oo (IX)
which leads to log, 10 = 2 3025‘
3. tan! x. u
>
We have -— (tan‘lag}\& 15

o\

\\ =l—z+m—-28+...,
(i 22 < 1). ;%t)i;g;m. |

::sii._o’tanhlm =x—fE+is -+ ...,
(z® Qﬁ,\' ?No constant is needed.
Lutz = 1.

WY
NS ™

. + oo .
* 4

—1-§+%-

Lo

Like the series for Jog, 2, viz.
SEE 2 Bk SaERY

this formula for 7 though interesting, is not suitable for rapid
caleulation. £
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Exencisz XXVII (r)

1. Compare the terms of the scries

3‘1‘1‘1‘%.;, % A
with those of the g.2. ) {:\ )
R E Tk T O \~§\
and show that e is therefore less than 2. &“3
2. Bhow that de) = —g=@ <

© TS
and that ,° f etdy = —ev +

3. Find z such that ¢* = 6, ands gx}ress 6 as an exponcntlal
series. {

4. Tiy = (e* - e-2), show th‘gﬂ:»

@ww —
dns (e® F e%).

o

. Bhow that (e* jf;\/é\”)z =¢® + e-2 = 2 and that

ey e—a)z (em _ 6—:&)2
N\ c 2 - 2 =L

QO
f"\ 3:C . dy
Uy NG T Bl gy

{:}Eegm with logy = } {log3x — log (2z + 3)}.
7\1\ ‘erily the followi mg

(1) I logcos:r = —fanz,

@) . log tang = 2—

sin @
" & H
“m_@ﬂ3=m?ﬂ
(iv) £ T _ 1

1"3 VIt z) zl+ &
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8. Differentiate:
Q) log(k + x); (i) loglk — x); (i) e~%; (iv) 8o

. 1 dr
- s o I T ;] —
9. Flndfe de, fS dr, and fﬂ T =2
10. By putting & = 1 in the expansion of (1 + z}*, find the sum
of the cocfficients of the expansion.

11. If population (P) follows the law,

A o
¢\

P, = PieH, ~

find k& when P, = 26 millions, P, =29 milliong;atd
¢ = 10 vears. Use this value of & to find the population i
in another 10 years. . N\

12. If £1 increasing in value at every moment adiounts to £1, ls.
in a year, find the tate of increase (i.eq&;in the relation
105 = e*, where & == ). <;,

13. Find the smount of £1 inereasing cophinually for 20 years
when k = +05, and compare it with the amounts at cort-
pound and simple interest atBy, per annum for the same
time, T\

14. 1f water leaks from a tankj"accord.ing to the law ¢ = Qe ,
in which g is the gmantity remaining after time i, zad if
g is 1500 gallons yhei £ is 0, and is 1200 gallons after 5
find the quantity’remaining after 20 min., snd in what
time there ii%)n y a gallon left.

15. Show that "
A/ 52
RS AU
:n\.;'
3nd find the change in €= when & increases by +01 from the
\\value found in Exercise 3.

\m Tind dy when (i) y = esie®, (i) ¥ = ztantE.
V17, Show that: -

dx
() (cosx - i sinz)® = cos2x + i sinde.
(ii) (cosz + isinz)® = cosdz L1 gin 3.

(i) (cosx L 4sinz)® = eting = cosnil 4 ¢ fin 7T,
( * ) (Demoivre, 1667-1764.)
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CHAPTER XXVIII
APPLICATIONS OF THE CALCULUS, AND EXERCISES

1. Maximoum and Minimum Values, O\

In your practical work on the functions, az? + be + gpginl,
COSZ, ete., you have found that at the points of maximunt and
minimum value, the gradient is O; that is, the diﬁeigitial oo
efficient is 0, N

This fact enables us to determine the value ofyg for which the

function is & maximum or & minimum, - A
ExawvpLm i, Y =axr?+ bz +'C,;
dy Ve \J/
ar = 20z +0
- dy NNV
For & minimum value, ar =0
Hence 2ax + .b* 0,
L b
from which Nz = 32
O b2 b8 —b
’ \\ _ dac ~ b*
RS T dg
This ageses with the result on p. 221,
E);nxQéPLE ii, Y = sing,
N &y _
\ i = cos:c..

“\*  For 8 maximum or minimum, cosx = 0, which is true when & is
)

T 37
5 OF -
2 2
. . . .. LT i
Uence gsing is a mazimumn or & minimum when 7 is 50t g-

Whether the value is a maximum or a minimum can‘be decided
as follows. Refer to a graph of the function, e.g. y = sinz (f#g. 1)



MAXIMUM AND MINIMUM VALUES 387

If regarded from left to right, ie. in the positive direction of z,
the gradient changes from + to —, and the value of 4 at the point

for which di—y = ig a maximum; if the gradient changes from
dx

- to +, the value of 4 is & minimum, If the values of g-% for the

&in & ' 0 y \
11 \\ e

+1 L

ﬂ_| /wx « N\

£ 8inx=ilorx
dxr

.\Z’; ' Fig. 1

?

N - jent, called
(Dimeti i h also will have a gradient, o
s\netion are graphed, this graph _ ) func-
) the second derivative or second differential coefficient of the

tion. ' . : .

. ximum;

It this second derivative is negative, the value of yis 5 ma

if positive, a minimum.

3
b =27, The
This is borne out by the graphs of fig. Lat == _2..3.11(1 =3
d

second derivative is written @
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In Example i, % = % (%g) = (f} (20ex + ) = 20 which is 1,
faiw+., ' ’
Soatr = g ¥ is & minimum,
In Bxample i, T4 = gine which a7 ; ative (—1)
n X&I’Tlp g1, d.'.c_z = s, which s ) 13 negatlve . A\
il 1 1 A ¢
et = 3 ¥ 18 a maximum, D)
whereas at —;, THINT S positive (—~{—1) = 1), A
N
37,. pe 2

Laty = Y18 8 mimimum, 0>

It may be noted here that if y = f(z)Nehe vecond derivative
% is also written f "{x), the first derixfgu’@iv\e' gg baing f'(x).

" 3 i
Simjlarly, we have higher derivaﬁvés, Cﬁi, 33%, v o, Wften
F@), fi@), L when y ~ fay
2. The Trajectory of a Pdjectile.
The equation given on 267 for the path of a projectile can
be more easily establig&ed a3 follows:
'{'“}\ y=ax®+bx;, , ., .., .. f(

X\ .
therefore \ %zgm SR/ N ¢

At thg\:p:g\lﬁt T =10, % is the elevation of the gun, and sub-
st-itl{i’r’i‘gzo for &, we have

O Wew L
"\“;" dx )
“\™ That is, the value of the tangent of the angle the gun makes

with the horizontal ig b,

ie. tane=p% ., . . . . . (i)

—j2 . ) :
Again, the maximum aliitude is _43, and in ferms of the
2 gin®
velocity is V2 sine .
2
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. ¥ _ Vsinte
ence ‘.1:1'1 - 29, E]
big
V2 gin?e
g tan?e .
= —5V% sule’ from {1v),
-—_ 9
2v2 coste & t\u\,.

from which 0=~

') 2 :
= —-2_secfe. « W
-9V )

Equation (i} then becomes { ¢
N

y = gvg secie + T tane.

3. Small Differences. \‘
The fact that gy is nearly equal to g% wntten g gz) can be
uged to estimate small dlﬁereuces‘apprommately

5 ExsamrLE i.—Find the chaugga in % when changes from 3 to
01,

Here 8z — -01. R\
Lety = a4, and l{b\&zf be changed in ¥;
then ‘,',", zgm% = 4a*;

,.’\ J
,\:3 5y A 4xBdr = 4 x 2Tx 01 = 1-08.

M ii—Find the change in cosx when Z changea from

30° ® 307,
{\ Sz = 20' = ‘0058 radians.
Sgymdy Sp = —sinT . 6T
= —.5 x 0058
= —0029,
ie. cosd0° 200 = -866 — 0029
== -8631.

This agrees with the tables.
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Application to Equations.

Examerr iii—The following illustrates g method of finding
approximate solutions of equations. (For the volumes Tequired,
see sections T and 8, Chap. XXI1)

A conical wine-glags, depth 8 cm. angd diameter of rim 13 en,
contains liquid to g depth of 4 ¢m., A sphere of diameter § g,
is placed inside (fig. 2}. Find by how much the liguid rises\.

Fig. 2 \ &

By similar triangleg it i found €ha% the centre of the sphere is
5 om. above the hottom of the\wine-glags, The lowest point Is
therefore 2 om. aboye the botfaim of the glass. (Sec Ex. 12, p. 127)

Let x {em.) = the vertigal distance between the lowest point
of the sphere and the susfgte of the liguid., _

The volume of liquid, between the sphere and the wine-giags,
reckoned from the Kovzontal plane of the lowest point of the
Bphere, is the 83188.45 the volume of the wine-glass from depth
2 %0 depth 4 erfl, mamely, 532 X 4 — 100 9} ~ 10 (e.c)

The volume\gt liquid between the Sphere and the wine-glass
sides is algg ™ '

N{‘g@ TR ) ~ @7 x 9] — tmre — o
&

& = 36T — 3022 + 8143
-\ Hquating,
~O W - 30t + gyp
\ )} kil "—_—‘—'-1—6————-—-._... = Iog?r,

which reduces to the cibie equation
362 — 8022 + 812
16 B

It is evident that lies between (4 — 2) and (8 — 2), i.e. be
tween 2 and ¢, .

101
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On trying 4, the left-hand side of the equation is found fo equal
125, Tts correct value is 104, which is (12} — 1§}.
Let 2% — 302% - 8fx®
16 =y .
The problem now is to find what change from 4 in  will make
a change of —1% in 2, :
dy 36 — 60z + 25z°

We have 7. = 1% , which for & = 4 is 12}. \
dy & ¢\
From % Ay '3%’ ' O *

dy —1% £
dx = Sy/d_{]} = "1?&_— = —015 nearl’y.:: 3

¥
The new value of & is thus 4 — 0-156 = 3-85, Su%tituﬁng this
value of x, ¥ is found to be 10-7, which i nearip\305.
If desired, a still more exact value can b@ﬁdund by using 385
for £ and —0-2 for 3y. \
The first result gives 1-85 cm. for thé.ise of the surface.

EXERCISE, :zii{"VIII (4)
1. Find a near solution to ~1‘:h’;ar f;qu&tion, e+ 6@3 +bx—115=0.
Find the remafhing roots by dividing by (@ — found
root) and solyidg the resulting quadratic equation.
2. Tind a near fgot"of the equation, 22* — 32° + & + 8 =15.
Show't]:;;% the other roots are imaginary.
3. Find by @taph an approximate solution to the equation
\~ gt 44 + 222 -2z +5 =0
¢\Then find a nearer value of .

AN . T .
A Tind a closer solution of the equation, & + 8inT = 7, gIVen
oY that for x = 23°, ¢ + sing = 7921,

\; w B, Find cosd5° 20, without tables. : »
6. Turn to Exercise XX (a), No. 14. Find the angle of elevation
or quadrant angle of the gun.

7. Find the maximum value of 1 - 6 — a3, for positive values
of z, and state the corresponding value of 2.

g .
8. Arrange the equation ¥ = 2%? sec?e -+ ¢ tene in B cOD-
le of elevation

venient form for finding e; then find the ang
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“aid volume is: pv* = K, from which p =

N\

372 EXPANSION OF A (AS

(€) of a gun in order that an object at an altitude {1 1000
ft. and at a horizontal distance (z ft.) of 2000 ¥d. maybe
hit, the muzsle velocity (v) being 2500 ft, per secand,
Account for the two answers,

9. Turn back to Bxercise XX {a), p. 222, and solve exercises, from

7 to 12, by differentiating the exprossions, ~
10. Find the dimensions of the rectangle which has 4 maximiw
area for & given perimeter P. (N

il. Find the dimensions of a cylinder smch that for & cotabued -
creumference and length of 9 ft., the volunle may be 3
maximum, N 3

? {"

4. Expansion of a Gag. “\ :

Wheu 2 gas expands ot constant temperailice, the change is sid
to be isothermal, and the relation betw pethpressure and volune is
given by the equation ¥

v = K, where Bsa constant.

It follows that p = K fo. A

The work done when the gas expands from a volume vy tod
volume 2, is the limit of dhe'sum Z(p 5v) hetween these limits

—the pressure changingSaccording to the law, pv = K (st
Chap. XXVII, section).

Henge, Wpr&i%\fv?p dy = f " ?IJ—{ dv =K' [loggv]
. X N ! ' = K(Ilogs'ug - log,vy)
N Ya
A& = Klog, o

K isBound from any simultaneons values of pandov. "
fien heat is not allowed io enter or 1o escape from the gas, o
climge is said to be adiabatic, and the relation hetween pressun
\ K
¥ )
The work done when the gaz expands from ¥, to v, is:

tly d _ {.chd _ %K —sd —K%[Dﬂ_s}]
Lpﬂ_Jw.ﬁ_‘th v ﬁ_v. T—s
. = _K__ (1% — 2,277

K 11 )
=105 o
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If the pressure of the gas is py when the volume is v;, and p,
{'Pﬂ’l - Paba)s

when the volume is v,, this result reduces to
since pyty° = K, and pny’ = K. .
For most gases, §-equals 1-41.

ixaurLE.—TFind the work done when a gas at a pressure of
100 1b. per sq. in., and of volume 15 ¢, ft., expands to a volume
35 e. 1t., (i) at constant temperature, (ii) adlabatleally a

5. The Cireumference and Area of a Circle. >

{1} Consider any sector. ; ",

Let the angle contained by the two radii be 8 m‘dmns the
radins R and the arc .

Then y=RI. . . "'.\\"‘. R

Now let the angle be increased by a smal}amount 58, and let
the corresponding change in § be Sy WV

Then g—I-Sy--R{,&i*Sﬂ) Ve e . s i
Subtracting equation (i) frod equahon {ii), we have
By R&8 (the increment in the are),
i xay

and therefore \\ <7 = R. '

When 3y 9»051\3,3 are diminished indefinitely, we obtain

Y,

Le. the\rate of change of the arc with respect to the angle it sub-
tﬁgdﬁ at the centre is equal to the radins (a constant).

Mt follows that f RdH =y (the arc), and this is true for all
values of §. Therefore, -
ar
Circumference of circle = f Rdf
Q
2 ’
= #
R i 1

= 2rR.



4 ..\'" >

R

h
3
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(2) Bimilarly, since the area of a small sector of ang]e 8 &
R256, ' )

1
2

25
Area of circle = f IR2de

e

I

= 7R2, R
Bhow, as in (1), that the rate of change of area of g seetor ol s
circle with respect to the angle is 1IR3, QO

(3} In the following example an Important intdgral is estab-
lished. Let 2¢ denote the length of a chord st distance & from
one end of the digmeter at right angles to it,."*} .
The area between this chord and g paralleNetord 8z from if is

\ # Ly
2¢ 8z, and the ares of fhe segment from @\¥ 01z 2 f ¢ e, which,
ik L& A

since ¢ = V@R — x), is A Qg
2 [ VIR <2 az.
1t 26 is the angle at the cenﬁié subtended by the chord,
g o0 _ VIPER =3
Elllm.. u E = _"_'E -

Now the segment:is\ the difference hetween the sector whose
angle is 28 and #s. Eriangle whose base is the chord and whose
vertex ig the geutre of the eirele. '

< Arean 6 segment — Reg R — o)vz2R — a).

2O o
Buty 6 = sin1 YEER ~ )

O fo VEER T H)dy

) T S
v/ = %{Rz 3in~11__‘r_(%_ﬁJ ~ (R —o)vae(2R — $))’

Verify that for ¢ = R this result equals 2#R2, tre
. By taldng 2 to he the distance of the chord from the centre,
1t can be showy ip g similar manner that:

f"/Rz 2ty = %{Rz sin*lg + JJV-RW}'
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1
g, Aversge Value of the Sine Function Ordinates from 0 to 3
The problem is really, “ What is the height of the rectangle

on the base 0 to 2 whose area is equal to that bounded by the

sine graph from C to %?”

Area bounded by sine graph = _ﬁ ? sipxd

= [—cos% - (*cos(})j;\

=[0 —(—1)] .x'.\\"‘

-, area of rectangle = 1. ()
A\

: o ' 2
Bince base of rectangle = %, height of rectangi = w"_;’Q =0
ie. a.verage'ya,l{ié =2 636,

~\ -
{i) Find the avorn ggivélue of cosz fromz =0 & =73

(ti) Find the awdrage value of sinz from = = Otoz=m
(i) Find tha,average vatue of cosz from & = Otox = m
(iv} Of wh\t anole i the sine equal to the average value of the

sine fr\o@ to 3 ?

"7 Root Mean Square.
/ The average of the square of the ordinates of the sipe curve
la useful in Engmeenng
{} It is readily deduced as follows:
Smce the ordinates of the sine curve hava the same
T o 0, the squstes of the

grageof

value from

Oto s 3 28 those of the cosine eurve from 3

corresponding ordinates must be the same, and the a¥
(G 23}
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the squares of the ordinates of these two curves must be the saime,
e.g. 8nd0® = cos(80° — 30°)

and 5in?30° = cos®(90° — 307)
(see fig. 3).
Now, ginZy 4 costy = 1, O

and this iz true for all values of sin?z and cos?r, and ( tute,
therefore, for their average values, which we have seen aw equal
" Hence, \
2sin?z =1 and 2cos?z = 1, "( N
where = denotes the angle at which the squarai “of sing and of
cosZ have their average value. v

Therefore, sin’z = }, and also co&zy =4

i.e. the average of the squares of th‘e\ hrdmdtes of the sine or
cogine curve is §. N

The root of the average {or mem} square, frequently denoted
by rm.s,, is v =0 707, ‘.,’»:.

For what angle have the Sme “and cosine this value?

{3} The average value may be calenlated as follows:

N\
"‘\ &11_123:@33 ]
Average valu‘s\\sf smzm e @
o). — cos 2
1‘TOW AW siniy = 1;—-———0-3——& = 1 — % cos 2x;

thel‘,E'fO'l"e

#

I

sm‘zzr,d,;b f (4 — }cos 2z)dzx

fi] 1]

2. 2
1 "ar — 3 { cos2nds
1]

f

T — i‘z’r [siu 2:1:]
—~0

‘Hence, eguation (1) becomes:

Average value of sin?x =

i
* $la



VOLUME 03 A PARABOLOID 3T
Fxzrorse.—Show that in (i) the same result is obtained when
the limits of the integration are g and 0 and the divisor in equa-,

tion (i}, g

Y
e 2
< P iz 4
= RE
d N
ax % N
x R\ X:
‘\‘\ 0'0
T -\ Ny
F x = RN e
3 T ¥ ’,'\\" -
Fig. 3 ~OFif. 4

8, Volume of a Paraboloid. o

If the parabola y? = k2 {see ,p.'.fﬁﬁb‘) revolves about the axis ofz,
a s0lid called a paraboloid (of Jevolution) 18 generated. .

The strip of thickmess,8x, at a distance &, generates » dise
of volume my* 8z, or mkaldx, which shows how the volume changes
with respect to (%4}; )

The volume of thevwhole paraboloid of length  is therefore

f Cihadn = yokz®.
L1}

4 N \ "4
Exswege j.—Bhow that jwka? is half the product of the base
an'd\%tﬁde of the paraboloid.

ABxamerr ii—A solid wooden cylinder i8 hollowed ont so thab
3-'1}11’3‘ interior is a hollow paraboloid. ‘What fraction of the soli
Y “eylinder remaing?

9. Simpson’s 1, 4, 2, 4, 1 Rule for Flane Areas.
The equation of the bounding curve is taken to be
y=a+brt ex?,

Congider three equidistant ordinates ¥y, Yo Yar the middle one
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being at = 0 and the others at x = —s and © = +5 respec-
tively (fig. 5); then

¥y = a — bs - es?,

Y2 =,

Y = a + bs + s,

— 7
from which bs = yaTyl QO
nd es2 = U1 F U 20 F g = 2 x”‘"\Q’

1 : 2 O

\ -
Area bounded ¥¥ythe curve, extreme ordinates and axis of 2

b e
)N <:/ s

' s ba?  ca?
{gw% _ @+ b+ eafar = _5["3" +5 4 _3,]
WV , b2 es hs®  cs®
INHEIC ST R
i‘%} 5 Qes?
<>:\\./ = S( l‘l + "'3—)
= 5 (Ba + 2es?
= 3.( & + 2¢5%)
8
=50y ty +ys — )

5
=3 (th T 4y, + 4.
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I five ordinates are taken the result is,
5
g{(yl Ay, Ty T W T YT Ys)t

= ; (s + dyy + Wy + Wy T+ Yg), and so on.

Hence the rule:

Divide the area into an even number of parts by su cdd number O
of equidistant ordinates. Take the sum of the first and last
ordinates, twice the sum of the remaining odd ordinates, and four
times the sum of the even ordinates; add the three restilts, to-
gether, multiply the total by the common digtance belween the
ordinates and divide by three. O

Notes.—The first or last ordinate or both may bed

A quick method is to mark guecessively th \prdjnates of each
set on a strip of paper, measure the totak 1éigth by ruler and
multiply by the approptiate number (2 o 4).

Exampre,—Plot the graph of ¥ 3'2&7'% 8z? and by Simpson’s
rule find the area under the graphdfrom £ =1 0T = 5.

SN g

10. Volnme of a Spheres

The ordinate (i) of fhe'semicircle, shown in fig. 6, b a distance
 from the end of iilké\diameter, is given by the equation

> y? = 2D — 2}
:".\ 4 5D$C'—332.' .
{ ‘.:’\" Y
N
O ¥ D----- _._;-—x
Fig. &

it gsnera.tes a

1 th ‘. ' diameter
¢ semicircle revolves about the dia onsider & very

sphere, and the ordinate ¢, & cixcle of azea Y
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thin dise or zone of the sphere of thickness 8z at this position.
Its volume is w28z or a(Dx — 2) 8z,

. 1
.. Volume of the whole sphere = f m( D — 2% dx
0

D I
Y T A
[ |

1]
002 2t Uy
SHES
ol 2 TU.”"\“, ..

\
7D3 D8 NG

I

G
3 NN
= % N LR

(Compare this with the statements on p. @16.)
Similarly, the volume of a cap of thickness ¢

t & N
= [ (D&~ 2% dz
0 1\

m\"\—__' 7732(3 - %t)a
as at end of seegfé‘ré, Chap. XXTT.

The volume ob any solid of revolution may be found In the
same way. MV is the volume from a fixed section up to the
. NG e dY
secmanx f{‘;"g:, then o= Y
E"\".
. ALSurtace of a Sphere.

A% Consider 4 thin sector at an angle 8 from the diameter of the
() semicircle (fig, 7). :

Y The emall arc R0 is subtended by a small angle 86 at the
centre of the eircle, This are sweeps out s narrow belt of the sul-
face of the sphere generated when the semicircle revolves,

Then the radius of the belt is R sinf and the circumierence
27R sin 8.

The area of the narrow helt is 27R sin§ x R84 = 2#R? sin §84.
Area of the surface of the sphere = _/; "97R2 sin 8



SURVACE OF A SPHERE - a1

{The limits O to = include the whole gemicirele, and therefore
the whole sphere) ’

1

2| —

9B D[ 0058]1'

= —9qR¥cosw — coa()

= —27R¥—-1— 1} y
= 4:1TR?‘ ' '\\

1f the integration is made between the limits 0 and & such t{@‘r
R —
cosf = —R-t . we obtain the curved surface of 2 spherlc&‘LOﬁ}’ of

\/

thickness ¢ (see the figure). ) .~\

9, Fig- 7

> il
£

»~\/

From ﬁ{é&"ne marked t, we have:

&
CU'QEEI' qurface of spherical cap = 2«320[_0059]
o —27R3cosd — cos()

- ﬂszﬂ(RR Fo 1)

— -2k~ %{)

» 2Rt

\">
)
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Exzrerse XXVIIT ()

1. Find quickly a near answer to the increase in volume snd in
surface when a soap bubble increases in diameter from
10 to 101 em.
2. Find the area of the cap of a sphere of 10 cm. radiug, 4. >
curve of the dome of which measures 12 cm. A
3. Find the area of the ocean surface within a circle g < padius
1000 miles measured along the arc of a greab citcle.
4. A spherical buoy, diameter 4 ft., sinks from 2 6 Bhin. to 2 fi.
7 in. Find the change in displacement. 7
5. A conical buoy, diameter 6 ft. and height 8" f., sinks ffom
51t. to 5 ft. 2 in. Find the change Ju displacement.
w\/
()
12, Volume of any Solid. M
We have proved (p. 338) that if A\Js the ares hetween a curve,
the axis of x, a fixed ordinate at £’= a, and the ordinate at 1,

then &N
dAS
&Y

and g A= f xy dz.

"The volams, (}\\any golid can be found by a similar method.

Let A{x) Ve the area of the cross section by & plane perpen-
dicular 1900&, at the section z; and let V{z) be the volume be-
tween @ fixed section at x = @, and the section at x. Then
5V(<)«é~.i(x) 8%, approximately, when 8z is small,

s )

or g = A;

and v —[ Adz.
Volume of @ pyramid,

Suppose, for example, the base of the pyramid to be a triangle
ABC, O being the vertex (fig 8).
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Let ¢bc be the section st distance  from O. If the perpen-
dicular to the base from O meets the section abe st d, and the
base at D, then Aab¢ is similar to AABC, and therefore

A(x) = area abe = area ABC X %: =4 :;;:,

where p = 0D,

R

R -5

~:"./: N/ . A xg
‘,\i‘j\ s ViE = 52 3

§”\6. . . )
To cogstant being required, since V=0
% Volume of whole pyramid (for which & = P}
A = {Ap .
) = } aren of base ¥ altitude.

3
3

Exprorst XX VI {c}
L A cylindrieal drum is 5 ft. fong, and the dismeter of 1tsi101;ﬂ°
i8 4 ff. When the drum js on its mide, 1t coqta;mw:r ot
a depth of 11 ft. Find what volume run 0 will o
surface by half an inch. -
{2a)
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2. If the rate at which water flows into a conical vessel is pro-

. . 4dy .
portional to the depth z, i.e. Fra? find an expression
for the time ¢ in terms of z,

3. Find expressions as in Ex. 2, when

W % =ova: @) Gy - e o

4. A funnel is emptying at the rate of 4v'x c.c. per sec., 3 beiug
the depth of the liquid at the time {. Find the time akén,
the dimensions of the funnel being: diam. of rind*20 cm,

depth 15 cm. o\ 3
d 'S ."
5. 18 57 =k — @, and & = 0 when ¢ = 0, proye\that
k

t = log, g ,”\\;

=
s
T = k(i — ey

CHAPTER XXIX
~\
¢ ¢\JCONIC SECTIONS
L\

1. Definition8w—Conic sections, or conics, were originally de-
fined by thé’irecks as the curves of section of a right GIFGUIM
cone by planes in varicus positions, They arc more conveniently
dcﬁned\‘a:g‘ loei of a point moving in 2 plane, thus: ;

goic is the locus of a point which moves so that the rafi
ofits’ distance from & fixed point to its distance from a fixed
Steaight line is eonstant. .
) " The fixed point is the focus, the fixed straight line the derectr®,
\ ) and the constant ratio the ecceniricity, €. ) )

The three kinds of conics are shown in fig, 1, in which e 18 ¢

spectively 2, 1, &,

8P, = £ P,M;; 8P, = P,M,; 8P, == § P,M,.
. When-e < 1, the conie is called an ellipse;

when ¢ = 1, a parabola;
when e > 1, a kyperbola.
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Note that the ellipse is a closed oval;. the parabola is a single
surve whose ends extend to infimiby; and the hyperbola has two
branches extending to infinity (ses fig. 6). -~

M
M3 \
| A
2 N
™My : ‘Q
Ky 'S\
ﬂ? « \/
| 5 |
M, - |
b
fu
g
F—=
=
2 o
=3
=
e
-
hy
£
=
£ 3
¢ LN
h\

2. The Parahola. '
The ohject i€ to choose suitable axes and to express the relation
between tké“co-ordjnates (x, ) of any point P on the conic by

an equatidn’
. In?‘ﬁé?»z the directrix is ZM, the focus S, the vertex 4, and T
1s any“point on the conic.

A\ Bmee 1> = ¢ and £ = 1, AS = AZ.

\ w4 AZ . h th
} Choose AS as the axis of %, and the Perpendlcular through the
vertex A ss the axis of 3. The co-ordimates of any point P are

T = AN and y = NP.
Tet AZ and therofors AS =a. Then ZN = f{a +x) and
NS = (g — 2.

Now, since %1:[ ~ g ande = 1,8P = PM, and since PM = ZN,

BP = (a + z).
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By the Pythagoras theorem NP? = 8P? — N§2,
le. Y=(a+zP—(a~—x?

?

which reduces to 3 =gz,

This is the required equation to the Pararora. It is seen that

since y = 4 2V azx there are two values of ¥ for each posit-iVe\

value of x, A\
. A

e\

Fig. 2

PEN

o\
The double ordimate at the focus § iz called the latus-rectum
of the conic. Tu this case the value of z for 8 is 4, &ﬁd_y =
+ Vda® = £ %a. Hence the latus-rectum of the parabola is 4a.

Imporlant Features of the Parabola y* = da.

1, "ﬁhe focus is at x = +a, directrix at & = —2.
AANThe semi-latus-rectum is 2.

\ 3. The focal distance of any point P(xy) on the parabola 13
N + x).

Mechanical Construction of the Parabola.

The parabola may be drawn mechanically by fixing one end
of a length of thin string or thread to a place (X) near the ed%e
of the blade of a Tee-square, and the othcr end at a focus (h}
on a sheet of paper pinned to the drawing-board (fig. 3). 'l‘bﬂ
string is kept taut and in contact with the edge of the bla,deﬂﬁer
the pencil, while the Tee-squaze is slid down the edge of
board. The pencil marks out a parabols.



THE ELLIPSE

87

The directrix is ab & distance from A equal to A8, and since
XM = 27 is the length of the string, it is obvious that PM = 8P

in every position of the peneil.

3. The Ellipse. N

Tn this case the eccentridity e is 1

It appears from figs, hand 4, and

the figure is symmet
L 4

3

ess than unity.
might easily be proved, that

el about line CY perpendiculat to BZ.

L\ Y
P{r{l}'—__________. M;
Aq %7,
N &
Fig. ¢ ..\',
, and two fooi B,

It has therefore two directrices Z.M, and

and 8,, so situated (fig. 4) with respect
AZ, = Ay and A8

mzﬂlj ellipse that
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For point A,, we have
AS =eAZL L L L. {1}

But another point A, on the other side of 8, also satisfies this
condition,

(For example, if ¢ = £, then (i) A8, = 3, and A7, =5, and.-
()} 4,8, = 12 and A,Z, = 20 satisfy this value of e.) N\

LAS =AW
By addition of I and II, since A,Z, =~ A,Z,, O
A, =eZ)Yy, ... 5:"}‘.' . (1
and by subtraction of I from II, since A8 = é‘ﬁg;’
' S8, =eAd, UL L L L)
Take A A, as the axis of z, and throuah’C, the middle point
of AA, draw the axis of y. R
Let A 4, = 24, \S
From equation 111, 2¢ = €ZyZ, & 2eC%,.
. O?:iné e e e e e (1'1}
From equation IV, 20832 2ea.
A =ea LD
If P(zy) is ani\g&aiﬁt on the ellipse, CN = g, NP =,

8,P = eP3y$3:;f eNZ, = e(CZ, - ON) = e(% - ) = {(a — £z}

A\
Simil‘aaly:; B8P =e NZ=qa + ex.
Igzaée SP+8§P=2z, . .... (VI

‘a}.}ery Important property.
~ "\, Since PNS, is a right-angled friangle,
N NS2 + NP2 = 8,P?,
ie. {ea — 2)* + y* = (@ — ex)?,
€*a® + 2 — Qeax + = g2 1 e2x2 — Yeaz,
1 — %) + 42 = g¥1 — eZ).
- P

t—_t— . = EI
& ' a1l - €9
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This 15 one form of the cquation to the ellipse.

At =0y=Favl—w.

That is, the other semi-axes CB, and CB, are +av1 — e
and —av1 — e respectively. If we put av i— e =D, the
equation becorues,

x2 i .
a—§~|-%§:1. U 04
.\"\

This equation expresses the relation hetween T and ¥ in torpls”
of the semi-axes, @ and b. PN

2 2 . ‘
Imporiant Features of the Ellipse, % + %@ =\

1. The semi-axes are ¢ and b, b 2pV]1— e The
greater axis is called the major axis, and tl{é&e’ss, the minor axis.
2. The foci are ab & = +ea = +N€— V% spd = —¢e@d =
VR ' O . .
3. The semi-latus-rectum i $he value of y at the foci (i.e.
[ N
stz = Ve — b9, Il&;mﬂ}'s +
£ The dirsctricosafe . S
. The dlrect-ncc‘sgafe at =47~ +7 @

5. The focal ﬁi}k}xlces 8,P and §,P of any point Pixy) on the |

eltipse are (g4 ¥x) and (@ — ex) respectively-
6. The #hity of the focal distances of any point
length 3’{\313@ major axig) and is therefore constant.
N} b =g, the equation becomes that of the cirele
24P y? = @?. This circle, whose centre is C and radius &, 18 €

P is 2a {the

N the cumiliary civcle.

Mechanical Construction of the Blipse.

In this construction use is made of the PT':[PGIW (V1L Pt:?lﬂ
o lthe sum of the focal distances of any point 13 constalt
equal to 2¢, the major axis. ‘

A pin or tack is fixed at each focus (fig- B) and & loopﬂof gzad
placed over them. The thread is kept taut as & pencs P
deseribes the curve about the focl.

H the thread keeps constant in length, the sum of the focsl

-
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distances 3,F and 8,P remains unaltered, since 8,8, does not

change,

—

¥ig, 5 44
AN
Examere.—If 21 iz the length of the thréﬁ&"show that { =
a(l + e). \'\
_ 7.\
A\

4. The Hyperhola. 2N\
The eccentricity e is greater than whity.

In fig. 6, Z,M, is a directrix and 8, = focns.

The vertex A, of the hyperbéla s situated such that

' N |

Belly = eAZ,.

~
3

B
...... Ml—P

z\\

NS ' 8,
Fig. 6

Here again, a second point A,, but this time on the same side

of 8, in 8,Z, produced, satisfics the condition
. (1)

SIAE = eAgZI.
A, A, at right angles as the

Take the straight line CY bisecting
axis of y, and CA,S, as the axis of =.
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In A,A, produced take point 8, such that
A8, = A4Sy,

and draw a directrix Z,M, through Z,, such that
AZ, = A7,

Leb A A, = 20.
By adding equations I and II,
8,8, = cAA,, since AS, = A5 _ R\
;. 208, = 2eaq, )

from which CR; = ea; f 3
and by subtracting ¥ from I1 X

A A, = eZZ,, since Agly = A&%l'f
. 20 = 2¢CZy, L ©

a :‘:,f
U = e

.
nl/‘
o

from which
=L aﬂd NP = y}

If P{zy) is any point on the‘mlvﬁ}é: CN
N = ex — @

4P = ¢PM, - eNZ, =..g{0ﬁ — (%) = ‘*(m a )
S\
Ng, 10, — ON) = (ea — 2)

Since PNS, is & right-angled triangle,
N\ §,P® = NP2 + N§2,

7 te. (e - ap =y e — D
NS e - 1) -yt = a(e® — 1)

\ .

”\,::P‘mdmg through by a?(e? — 1),
W @2 o

’ S A
I£ B is written for a¥{e? — 1), the equation. becomes

x ¥ _
2 5
the b; perbo!a_ it is
s and ] iong of the

Comparing the equati 113
quations of the ellip
8een that t-h?ay differ in one sign only, and many Telatl
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hyperbola can be obtained. from those of the ellipse hy subati-
tuting —b® for +b2,

It will be seen that fig. 6 consists of two branches, one on the
right side of the axis of y, and the other on the lefh

The equation proves this, since for any value of y there is a
positive and also a negative value of .

The two branches of the hyperbola and their foci and directrices
ate interchangeable. N

fL"Z yz 2
Important Features of the Hyperbola, pr il s R B )
"\

1. For & =0, y = £+ —82 This root cannot beiexttacted.
The hyperbola does not out the axis of ¥, but if the &3k is cut at
B, and B, by a circular arc described with centzd A, and radius
ea, then CB; = +q+/¢? =7} = pand (B, = wave =1 = —b
B, B, is called the eonjugate axis of the hyporhola, the other axis

being A, 4, PNY
2. The foei are at x = eg = +v’c§{17? and & = —ea =
CVE TR

3. The semi-latus-rectum is the\value of y for & = va® T B,

*

1y P 3
namely, —.
a X

N 3

. . Y @’
4. The d.lrecmcesma{é at T = :j:g = L V(@ - By
5. The focal d{{fénées 8,P and S,P of any point P{zy) on the
hyperbola aroyex™ @) and (ex + a) respectively.

6. The diffefence between the focal distances of any point P
is 2a, and I8 therefore constant.

7 If\b\= a, € = v2, and the equation becomes 2% — y* = @*
The hyperbola in this case is called an equilateral or rectanguiar
hyperhola. .

=\ D Mechanical Construction of the Hyperbola.

The device is based on the property that the difference betweel
the focal distances of any point P i constant. It consists (fig. 715{
of a rod 8,R pivoted at one focus 8,. Near the other end o‘f the ro
is & hole through which s string is passed and knotted, The ot-}éef
end of the string is made fast to a pin or tack at the other foeus -
The peneil used to trace the curve is placed so as to keep more a0
more of the string close up against the rod as the pencil movet
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along the rod from R towards §,, and the rod swings across. This
is cquivalent o subtracting equal lengths from the rod and the
string. The difference between the eficctive part of the Tod and

N\
Fig. 7 .‘:\\'
. \'
of the string is unaltered by subtrs,cging the game length (PR}
from each. ) N\

1. Determine the chie{hatmes of the conics,
o 2 3 )

N el
£\ 2
s“u) :82_ “'_.J— =
<& Rl T
; > f"j — gﬁ =1,
.\l 16 9 *

fﬁ;\?ind the eecentricity € of the conics,

2
2 Y @®_ Y1
3. Find the points of intersection of
T 2 ¥
T Y 1 and 579 L

1679

and interpret the result.
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4. Find the points of intersection of
Ll
16 tg =1 and y® =6z

5. The axes of an ellipse are respectively | in. and 13 in. Find
the eccentricity, and the positions of the foci and direc-

trices. \
N ¢
(\)
5. Tangents to the Conics. o\
N
(i} The parabola, y? = daz. ,J:y"/
dy O *

The gradient at any point is i
By differentiati sy N
¥ differentiation, Y g = e :'\\\
. dy _ 2‘.a‘“f\('
dz
At the point z,y, the gradien{s&g{’?ﬁ.
R 1
&
The equstion to the tangent at Ty, is the straight-line equation,

(N 24
\‘3;‘\— ¥ y_(x - &)
\\ " 1
AN WY T YR = 2a(x — o),
which, sin(;.(}"{gf;’z"

[

daz;, reduces to

o I = 2a(x + x,).

AN\ 2
m('i)%he ellipse, % + %: = 1.

,»\j:\;“?raceeding ag in (i), first find g—i

N/

Hince YR = med - ),
dy B2
dy b x
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. ' R S
At the point zy2f, the gradient I8 — 3 yﬁ, and the equation to
1

the tangent therefore

Y= '@@(33 — ),
oyt = b -y
Yy, W T T (xz; — 4%
Transpodng, @il + y% = i%: + %2. R \i\
And since :El—z + y—f = ¢ ”'}xs"'
a? | be s A\ 3
"

the equation to the tangent at Tl is

xx; Yo \
a?l + bzl =1. ':")\\./
RS
ee 2 Fred \S
) The hyperbolay g5 — g3 = 1 O

Proceeding exactly as In (if), s squation s found to be
x2S IP
e
L .
1t will be observedthat the equations to the tangents may be
written down frofa 4l equations to the conics by substituting
xz, for 22, yy; Jar 2 and in the case of the parabols {Z + )
for 2. \".;’.‘:
EXAMPS,'.‘r;.“-"—and the equation to the tangent to the ellipse
2 ints for which z = 3
2—5<\\%’# 1 at the pou:tﬁ_ or2 whie .
~SFrom the equation %5 + % — 1 the values of y for & = 3 are
\ dound to be 24 .
) The equation to the tangent to the ellipse 18

ax,  Wh -1,
%9
which for 2, = 3 and ¥ = 2-4 becomes
S MW _y o y= 2378450

25 16



396 ASYMPTOTES OF THE HYPERROLA
and for z; = 3 and y, = —2+4,

3r 4y _ — AR _ &
o iF 1, or y =45z — 375.
6. Asymptotes of the Hyperhola. O\

These are two straight lines which the hyperbola approgchs
but never meets (fig. 8). N\ ¥

ooz oyt
From th -y — S =
0 et E(fh,a‘w tlon s 1,
> N\ ¥4

» 2 2
y N/ y M o
,»\2\ g L

If 2% is very great, ,\/ (1 - 2;_:) is nearly equal to 1, so that the
value of y, at a poiat on the curve for which  is large, is nearly
:ta.fc.
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&t . 142 :
The value of -G8 nearly 1 — 3 o5 28 We Iay see by

squaring; therefore, approximately,

y= (- )

. b ab
Tt T
The lagt term becomes very small as z?— . Hence the\' y\
co-ordinate of & point on the curve is nearly equal te :i:aﬁ

7

‘ b \
1.8. YR+ E:.t:. N\‘\

The two lines y = g x are the asymP'Wf’P{\ /

In the case of the rectangular hyPBIbOI}’% = a, and the equa-
tions o the asymptotes become ¥ = §% andy =~

These straight lines make 45° with the axis of , since tandd® = 1
and tan{—45°) = —1, and arg therefore ab right angles to
other. This accounts for themame rectangular hyperbola ™.

Tt may easily be shown fromt a figure that the lengths of the per-
pendiculars from a point{e, y) to the lines & =¥ = Oandz+y=0

are ;c\_/—_g and - i) .,f\espectcively. The product of these perpen-
diculars is %(.1:3.:%42), which is equal to 3a?, if the point (%, ) 18
on the rectapgular hyperbola. )

Since the\perpendiculars are the co-ordinates, s8y (T, ¥} of the
point reforred to the asympbotes a8 AX€% the equation 18

2\ .

§ xy = 365

’.\ or xy = Ko

N :,\"‘C:;Weﬂ with this equation ocenr Very frequently in Physics.
';-hm’fmals- ic at oint jg the straight line at ri;ht.
angle: 1100 It-rlf.L: ltatg,gi;;: gtctiatagzift. Tf the gradient of the tangent

at the point o,y 8 g = (%)1, then the gradient of the normal 8%

1
that noint js — = = —{ -} -
at point 18 7 (dy .



398 NORMALS

The equation to the normal is therefore

d:
v-u= () e a
This becomes, for

(1) The parabola, #? = 4qz, ¥ —1h = — g{; (z — 331)-3\
(i) Tho eflipse, 5 + % =1, 4y = B _ IS
i@ b bixy KW
Y aty, 8

?
(]ll) The hypcl‘boia., @ — 32 = 1, y — yl = . E%(x — m]).

Exercise.—Find the equations $o the n.a;ng\a;k"and tangents

SN

at the point 2,y on each of the following cotics:

. LoZr oyt N xE
) g* = 3625 (i) g5 + 55 = Lol o - % =1,
' .
and, if possible, at the points forwhich & = 3 and = = 6 re-
spectively, \J

Sub-tangent and Sub-mnq,};’:‘“

The length of these is of gome importance. L

Referring to fig. 9, for point P(zyy;) on the conic, TP is the
tangent and RP the\zaormal cutting the axis of & at T and R

respectively. PN i§'‘the ordinate of P.

T

P (X))
<@ N
\\ o] T N - R X
.,,\'s; . e yl(g)]______ ___H_yl(é).r--
Fig. 9

Then TN is the sub-tangent and RN the sub-normal. y
If o is the angle the tangent makes with the axis of &, then i
(g—g) is the value of % at P,
1
diy _
( a".r)l = tana,.
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SUMMARY 289
PN
It follows, since TN = —-—, and RN = PN tana, ﬂlat
dz
. Y
(i) Sub-tangent TN = (dy Jdz), yl(dy)l
(ii) Sub-normal RN = yl(%) .

ST = a1, 1+ ()
(iii) Tangent TP = v PN FIRE = 1+ (d‘y)l.

—_— 2 P {
(iv) Normal PR — vPNE T RN? = {1 + dy - O

dz ¢
ExaupLu.—For the parabola 3 = 44z, &y f%@aﬁ?& =y

J L _ - l = 2a,
the sub-tangent 1s 5 = 21,, and the sub n{rma #h X ™

\ "4
\ \
8. Summary, n v
The equations of all the conics alg mcluded in the general form,
d:c2+ey2+fa:y=l~»gm+hy+k 0.
Thus:
LIt d, 1, ha,ndke@ch—o and e = 1 and g = —4a, then

. 28 9}’ = dgz. (parabola}

2.Ifd¢gl~’"£= lf=0g-01= 0 and = ~1, then

O 2 g2 )
7 % + ¥ =1 (ellipse)
i"\."
N d k= —1, then
’..Ifd=a§,e= bﬁ’f Og 0, h =0an

z_ ¥ 1. (hyperbola)

a b
4 1fd, e, g, heach =0, andfflandk*‘—K,ﬂlﬂn

zy = K. (rectangular hyperbols)

5 ¥ d, e, feach =0, then o
gr+hy+k=0 (straight live)
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9. Polar Co-ordinates,

The position of a point can be defined in terms of its straight.
line distance from a fixed point and the direction of this straight
line relative to a standard direction,

Thus, if O iz a fixed point and OX a standard direction, the
position of the point P is given by the length of OP {r) and thes,
angle (#) which OP makes with 0X (fg. 10).

The values of » and 8 are called the polar co-ordinates(0h.P,
O being the pole. OP is sometimes calied a radius vecton,

The three conicg can he expressed by cquations, ealled polar

equations, which give the relation between r and ffonall points
on the curves. 4,

Fig. 11

It ZM is thé‘dj.rectrix, 8 the focus, 8L the semi-latus-rectum
(1), and ethe’eccentricity of the conic, then taking 8 as the pole
and (r,8Mas the polar co-ordinates of any point P on the curve
ZX heitg the standard direction, we have (fig. 11)

V7 = 8P = ePM = eNZ — ¢(Z8 + SN) = ez + 68N,
S ;\"'s]nd gince [ = e.Z8 and 8N = r cos#,
\V - S S
¥ =1+ ¢rcos or T T e cosf

As before, the conic is a parabola when e = 1, an ellipse when
e <1, and a Ayperbole when e > 1. f

The reader should trace the curves, taking the same values 0
e as before, viz. 1, £, £, the value of { from each of the ocomcsoioll
tig. 1, and calculating r for convenient values of 8 from 0° to 360"
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Exzrorsg XXIX (B)

1. Wind expressions for the sub-tangent and sub-normal of the
. fricy y?‘ 2 yﬂ
ellipse 3+ 33 = 1, and the hyperbola =5 — 35 = 1, for

any point P{xy).

9. Show that the equation to the tangent af any point AT
of the rectangular hyperbols Xy = I is (\A
7"\

Y A

y-—th~ —p& =

which reduces to RS
ayy + o = 2, \

and that 2,9, is the middle point of'tthingent terminated

by the axes of z and Y- Show also‘that the area of the
triangle formed by the tangent and the intercepts of the

axes is 2k and therefore cqq&ﬁ&nt.

3. Find the co-ordinates of the.j:??i:i’ts of intersection of the para-
bola 3% = 2Tz and the hyperbola y? = 9(a? — 4

~

4, Show that the tangend o' the parabola y* = dax ab T,y outs

the axis of ¢ at® = —%, 8nd state the method of drawing

a tangent dased on thia fact. :

. at

5. Wind the angles between the tangents 10 the conic =— + ¥ -

e . %" 9
at thespoints for which & = £5.

N

\ L) a ndx
8. The yol t lution generated by 8 curve 13 n[Y
?‘({iﬁa‘;ﬁ]ﬁﬂrﬁ?a OIEl’;hgow that the volume generated by

O\, o2 P .
SN0 the eliipse, 72 Y=l
O 2
N\ 11'31;:3{3“2 - 22

= 2 .
(ii) the hyperbola, 2 %5 =118

'rrng 5 [ *
_'3_&?(3: 3a%). .

N
7. Prove that the ares of the ellipse g3 +ag=1s mab.
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402 REVISION EXERCIST

8. Referring to equation (iii) {p. 857), find the values of coshi
and sinh for various values of x, say from 0 to -5, then
plot the values of coshz on the axis of &, and the corre-
sponding values of sinh® on the axis of y, and verify that
the graph is a rectangular hyperhola.

Revizron Exercise [V \

N
L. Find the great circle distance between Bermuda (32° 19° N., 645504 W.)
and Plymouth (50° 22’ N., 4° 7 W.). (The Prime Minittr's aerial
journey, January, 1942.) >
2. (i} Find e=M sin® when x= T4 !
(i} Plot the graph of e~#/ sinx for two eycles and Betice the effoct of
&%/ on the graph of ginz, "N

3. A telephone current diminishes in the ralio@<%jh a distance miles.
Find the current at & point 100 miles from \the trapsmitling station,
if at this station the current is 1 unit, andhif'e is 0-0125.

4. When a rope is wrapped round a round pqést £nd a pound weight attached
to one end, if is found that the pnll B o be applicd af the other end
to cause the rope to slip, is given'byvthe equation

P =g (I1.),
in which g4 is the coeﬂ'iciely:fof.fi'iction hetween the rope and the post, _
and 0 is the anglo of lap coind the post in radiuns.

Find P when the roper'is lapped twice round and the coefficient y 8
0-26. ~ }

) e A o
& If x=§ +Ce T, snd =0 when ¢ =0, find (. Then find © when E=100,
7 § 3
R—20, Lﬂfmﬁd £=0-05.
6. {i) Tutting ®s nw, show thut j’; {sin nw) = n cos pa.
(i) Puﬁt}ﬁg ==gin ¥, show that %(eﬁn" z)=n oV cosx.
A

T H\y:=' vt —g2, find dy {sabstitute 2 =af —22),
- di
s’\\

};8. I z=ginz, then g“ﬂs z, and [ein®z coszdy= J'z“dz. Show that
sintr+h g
T+l
9. Evaloete J‘asxin2 #da, expressing sin? x in terms of 2w,

the integral equals

2
10. Bhow that y =k cos (na: + C) satisfies the equation géye +aufy=0.

il. The egnation y=§ {e7le+ g==%) ig that of & catenary (the form talken by
a hanging flexible wire supported at each end). Show thab n:ﬂﬂfl' the
vertex the oatenary nearly coincides with the parabela y=c+52



1z,

13

14.

16.

REVISION EXERCISE 403

2

Tind the points of intersection of the hyperbola ?-‘—%-— 1 and the para-
bola 4= 27z and the volume of revolution generated when the arez
between the curves revolves about the axis of .

Tind the equations of the tangents to the curves of Ex. 12 at one of the
points of intersection, and the ‘angle between the tangents.

A radius, the length
rotateos about one

(} of which varies acoording to $helaw r=a+ beosfl,
end, B heing the angle of rofation. The ares aweph

gut by ris 3 _[rz d0. Tind the ares for one complete cycle.

. A barrel having the

4 N ’
shape of the volume of revolution generated hythe.')
sevolution of part of an ellipse about its major axis, end bovndsdyby “

e 1

plane ends, has the following dimecngions: mid-dismeter, 3 .3 longth,
2%
S

6 ft.; diameter of ends, 2 ft. Find its volume.

Draw the graph of 4 = va? T Zfromy = 0tox = 4. Draw:é:ny ordinsbe
for » value of x between 0 and &, and show that #he, ates botween

thiz ordinate and
Show also that

R & aF,
(i) f«/ﬁ e = davet gs}% ein™? e

I
and (i} f Vgl — 2tde = %
0 &

. LN
that at z = 0 is equal o felad— o + un 15.

AN
T

O
aaky W

»
N
\ e
LN
S 2

4
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SUMMARY OF IMPORTANT RELATIONS

Algebra. ¢
+x+=-i~,—x—=+,+x—m'—-. R\
¢+z+x+ ... {nterms) = “:\’n;\.
TXexagX, .. (nfactors) = O
(€ £yP = 2° & 2ay + 44 (m+y)(:c—y}*ﬂ”\§y3-

— 1 (D
(x_by}n=wnim]y+b 2\'\\,
n{n—-l(ﬂ,-—2) A\
:l:___.b”—ga':iya.{ yﬂ.
= -y
Ty Tyt ;a)a‘i
L J— T
7 even, Tty = a1 —a:’»"&y + caa Yy
" -
h odd, :E:E _l_% = giles =iy 4 + yn1
Ve - B dae
far*+brtes9 x—= bi;z %@
L)
a+{a+d]‘t\(\a+2d) e+ n—1d
N\ = In(2a + 1 — 1d).
a+aa"%“’wra+  F ?‘n-1=g%-—:ﬂ.
Hros 2y T
K ar * 3

o \ooshx = #e® + e, sinhz = L(e* — %),

NS

A

eosh® - sinhax = e*®, cogh?y — ginh?x =1,
{cosz + isinz)" = e¥Hime = cognz + ginne.
Mensuration—

circle: circumference, 2wr: ares, mrd.

cylinder: surface (27rh + 271%); vol., #r%h.
cone: surface (#7VHE + 2 + m2); vol., 3n1%h.
sphere: surface 4m¥%; vol., $m¥3.

* For aign, see toxt p. 203 or 326.
404



SUMMARY 405

Trigonometry.
Plane— _
A .
tanh =~ ii)n_s;{’ gin ( = ) = cosd, cos(-’I - ) = ginA.

ginfA + cosA = 1, sec?A — tan®A = 1, cosec?A — cot?A = 1.
sin(—A) = —sinA, cos(—A) = cosA, tan(—A} = —tanA.

sin(cE + A) = gos 4, €08 (ﬂ: + A) = —sinA. ' .\\“\.'
A\
sin{m — A) = ginA, cos{m — A) = —cos A. ,\}: 7
N\ p :

sin{A L B) = sinA cosB - cosd ginB. N
cos{A 4 B} = cos A cosB F gin A sinB. X

tan A J- tanB RN
13 tacA fanB d
€n2A = 2 sinA cosA, cos2A = cosgA& gin®A,

tan(A 4~ B) =

2 tap A \ \J
tan24 = 1 — tan?A’
n- cosA g* \/1 + cosA
sm I
’ 2"
ta A ’\/1 — bﬁA
) kgMS
A—B

c'os—-—""-

sinA + smB ¥ 23111 2

N A+B A-B
amA —\smB = 2 cos—g sin~—g

N A+B A-B
‘E‘\\SA 4+ cosB = 20875 cos— g
o A+B . A-B
™ cosA — cosB = —2sin—sg sin—g
- a b =9R, a’s.—_bs+c2—2bccosA.
ginA anB smC B
iy AVF: A 5(s — &)
sing - R 9, aosg = T
I d—
and 5= B~ 9.

2 s(s — a)
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NATURAL COSINES

Subiract Mean Differences
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ANSWERS | O

Ex. I (a) (
1, 105, 105, 106, 105, 106, 106. 2. 3937, 0-29, 0:50, 0‘49.,\3‘

8 I
£ 2
V

Fx. I () X R
1, (i) 1356, (i1) 3-87, {3ii) 025, (iv) 2200, {v) 220,000, (v‘i} 30,000, {vii) -05,
twiii) 325, (ix} 1-5385, (z) 1,250,000, (xi) 25-64, (Ri1} 4,800, {xiii) -0675.
2. 59-6. 3, -6214. 5. 1 hectarc = 2} ae\qu APPTOX.).

"N
Ex. I (cf)

1. -05, -04. 2. (i) -1, (i1} -94, (iti) B‘S‘, (w) -3. 3. 16:30.
4, 19-38, 5, 51-194. 6. gmtu 7. 1819, 8. '6736.
9, -5064. 10, 31424, ug :z 8812, 12, 5184,
<\ Ex, IT {a}
1, (i) 90, 45, 135, 228,225, 135, 135, 90, degrees; (i) 270, 315, 225, 135,

135, 225, 225, 270, degrees. 3. (i) 90°, {ii) 360° 7. 20°
\O Ex. II (5)
3. Bight, ebqgies
"\s
\\\“' Ex. II ()
T4 £250 a8 contrasted with —£260. 2, —£60. 3, £00.
\4 £115. B, —£115. 6. Assets, £850; debts, £500; state, £350.
‘% Zero. 8. —£150.
Ex. IIE (B)

L (a)12°% (B) —5% (&) 0% (4)100% (o) —15° | 2, 25° 8 10%
4. -10° 5. 15° 6. 10. 7. 20,—50,5,5. 8. 180, 9. 190.
Ex. II {c)

2, +23em. 8. — 790 am, 4, — 26 cm.

418



1, 60° 2. +20°,

ANSWERS

Ex, III (p)
4, +3028 ft., - 900 T

Clockwiso, +60 r.p.m,, —60. r.pam.

419

g, —100 r.p.m,, =200 r.p.m, i belt uncrossed; — 100 r.p.m., +200 r.p.m.
if erossed.
7. +15 min., - 10 min. 8. § min. per day, —5 min. per day,
9, +32:2 ft, per soc. each sec., —32:2 ft. per sec. each sec.
10. +12 1., —121b. 11, By using plus and minvs signe.
12. —55, +1915. : A
. {
Ex. IV (a) O
1.21. 2 -1L 3. -5 4, 5. 5 7 N
6. 0. w13, -5 8 -13. 9.8 10. -3 7
m\\.
Ex, IV (8) \%
L 20, 2 -—-20. B4 4, -4 5?25 & -l
7, 15 8 26 10, 16. 11 -10. Q242} miles W.
Ex. IV’ (Cj".’
14 9 -4 816 & -16064 6 -4 D 16. 8 16
9-12, Reparded from tho second gumber, -28, -8, 8, 28. 18, -6. 3
14. 6. 15. —4. 16, —10. 1MW I8 10. 19, 13. 20.13. &L
92, 5. 93 -5 o4 14,0\, 1 269 A 20. 28 -4
V7 Ex 1V )
. . -1 7.-h
1, 18. 9, 18 3 -18 &1l8 5. - 8-1L 4
8 L 9.2y 10. 1 11. 0. 12.0. 180 14, ~16
15 _go. 18580, 17, -36. 18.4. 19 -8 2. —8150.
o1 15 /A% = +15, +5 x —8 = —18, ~BX +3 = 15
{p% -3 = +14
22, \f&ninua, (if) plus.
Ex. IV (5)
o \ 5 4, & B+ 6 -+
0 it g, -5 8 -5 . - 1 _
\V =« -3 8 % 9, -6 106 11. 3. 11:‘ _:'
13, -2 14 0, 15. 5. 165 120 8 7
, 18, —7. 20. 4 o], ~4. 20 12, 24, () 6, ) — 1%
Ex. V (8}
: 8, 2 + B
% 1. Ta. 2. 8z 3 % 4% B8 s
1. T g -4z +5 98 10-% n. -gp et
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13. 3¢ + 2b. 14, -5z + 2y. 15, 5z — Zy. 18. 3z, 1%, {w + z) g
18. (= + 100y gn1. 20, 8a + Fi6 + 6o B, —5 + 4o 28, 22 + @ + 35, 15,
23, da — B¢ = —5; lines, +14, —2, —10, 0, —1%. 24, 8o - T - By

95, (i) 0, (i) 12, (iii) — 5., (iv) —13, (¥) L, (vi) 5, (vi) 3e -+ 13, {viil)e — 17,
26. (i} 7, (i) —5. 2% (i) 0, (i) Ge, 86, or 6c, (i) 12a, 134, or lic

Ex. V (8)

1. (i) 4a, (i) —de, (i) 8a, (iv) —8a, (v) —da, (vi) 4a, (vii) 8q, (vii) — 84

G.a— 75+ 8¢ &, (i) Zx — 2, (i) x, (i) —a, w}‘/’r\

5.~ — T — 2, —17. 6, —2a + Tb — de, 20. \

7. Regarded from ihe first term, {i) 2x, (ii} @, {iii) 3z — 8, {iv). xs:by. Re~
garded from the sccond term, (i) — 2=, (i) —a, (1) 3 — A= {w —z-y

8 {y—xh(z—ygm D f{w-m-+ar-—-zgom, (w-—“m+n—9,}gm

10. (C = W), (¢ — M), (M — W) gm. ’ m\
Ex. V (¢
- p \.;
1. az. 2, w. 3. ubz, LA — Bax. 5. —Jy.
Yoaxr+ 20 8 —dxr -6, 9 Soxr+ Ga,\—‘Sax — ba.
10, —6Gax -+ 4bx. 18, o, —az ‘—“—a,z as.

14, (i) —6a%p, (ii) Bab®, (1) 42% (iw) Sda?, (v) da7, (vi) o8, (vii) 9e%%
(viil) — e, (ix) 8a®. (i) -1235 ) 9, (iii) 16, {iv) —16, (v} 16, {vi) 64,
(vii) 728, (viii) 27, (ix) 583‘1

15, oy, @y, wy, 108, 3b g.;

.’Ex. vV (b
& v
" :
_ 7\ 3 — — Bt . SR,
1 -a. 2, a. \‘B 328, 4. o 5, —3a 6. %
Y. a2, 8\ — . 9, o + 45, 10, z — g% IL 10z
12 ety \14“"- ...'_2 orlr + A 1,z — 3mp 15, S E b — 4
7 4] 5] f
_ 3 - e hd
16. 43;*’\ 17, % + 5z — 4. 18. ” 19. . 2.

21,{&%@1&, (f1) — 3, (i) — 54, {iv) 475, (v) 6, (vL) 6.

o\ 1 & — b -
;2?.. 23, PR 24, 228,
Ex. V (E)

1.1, 1, 422, 927, 2824, B2, 162, —x, &7, ﬂ{a, eE b)
2. EBa, 0 LT, L85, bl B A kg & ,Mi g

. b4, +5, £8, £10, 4-12, 2+ 3, 2v5, 2v7, BV 2, 4v’2 ~5v3, k1%
12VE, 2V, 20v'2, 4tV 2, 2V 2.

7. 105 3; 10%, 2; 109 0; 104, 4: 108, 6; 107, 7.

8. 2,5,86,3 3. g, 25, 25, 85, 510, 10. 5.
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Ex. VI (4)
5. 150 sova., and £40 debis. 6. 10x — 153 7, -10x + 151
8. 2% — Jmy. 9. —20% 432y 10. -2y — 3yt L. -+ W
19, w2 pt4ci 13, 2a—8b+3c 14, Szt —2xy—3z- 14y 16, 12a-3b.
16, -4 + 66. 17. 0. 8. 2z +y). 18 ~2z + ¢
90, —2(x — 3y} 9], 3a — 2b + 4k 29, 3o - 2b) + b(e+5d).
93. 3{n—2b)—5(c—5d). 2 ala—b)—de—d). 2. afa+b)—ba—b}
98, z(at — oy — ¥ W E - 2y, 20, 8zt + 4. 30 2= By :\*
.\
£x. VI (8) AN
"
1. — 13z — 3% 2. —a — ax + bay + 4 8 2 3
4. -S4z + 48, 5. 2T. 8. )38y ~ 4
¥, 20{30 — bla — b)) 8. ufale? — PAE W
9. afp — ofb — N} 10. z{sz + b\*;y{cy - dh
11, alz + ¥y + o 12, (a + BBy ).
18. (p 4 giz + ¥ + <k 14 {p‘rk‘;)(tc + 2y +th
15, 2y(p + @)- 16. ja whia + B
17, 2(e + B), 122 in 18. 2{pa + O) ¥ abh
19, 20519, m. 38104
Ex. VI (©)
1. <y, By" & apren, atblet. 8. o, '
4, 5z, S0y (5. gabet, Batbich g, are, ot
7. 1, Babe. 8. 1, 8ac. 9. 8, B0abe.
10, a + b. 4 11. & + 3d. §;+=.
g+ 2 % + b o .
13. x'\,~ } / 14 ox -
X' = 3y g
' 1 ;—“’b}“ 17, m- 18. ;-
PN 2 + 2 0, 2 + 4
a8 e Ty o
7 N . -7z~ 2D aa 2
~\J 22 _afli.'j, %Qy 5 . oG-
\ 4 3 bar + 1)
. = 28, 45. ' gtz ¥ 1)
ay®
28, % £9. aba + ) 90, 6at(s + 1k
. 5 i
Ex. VI {a)
g ee. a6 B 607, 90°-
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Ex., VII (p)
2, 2:6 in., 41°, 79°.

Ex., VII (¢)
2. 23 in, 7. 10+3, 20 cm. 8. 5-2 cm. nearly.

N\
Ex. VII (1)

L. (i) 314 om., (if) 33 em., (ii]) 88 in., (iv) 67 ft., (v) 22 in., (vi) }1}1:
2. (i} 78-5 =q. em., (ii) 862 sq. in., {iii) 616 sq. in., (iv} 3! sq\ﬂr
{v) 883 sq. em., (vi) 9% sq. ft.
3. 7 in 4, 14 in. 5. 7955 miles. 6. 154‘ sq..i.n.
7. 257 em. 8, Tin, 77 &q. in, 9, 72 or
10, () & + & + ¢ + d, (ii) 4a, {iil) 22 + 2B, (iv) 26" -1"‘2 {v) 4a,
(viya + b + ¢, (vii) 2¢ + B, (viii} 3a.
1L ar + 2r, dar + 2r, 15, #2 — }mrd, 1ore? —\{} dart —

16. Bk, $abh, 7rih. 17, 3abh, Jabh, *‘{
Ex. VIII) (A)
1, 4. 2.9 8. <3 4 0 5. 0.
6. —10. 7. 5, 8’.~:—5. 8, —a. 1 -3,
11. -3, 12, 3. »13 3. 14, -33. 16 -3k
16, 31, 17, 5 -1 19. 1. 20. — 4
21. -3 22, — 23. -3 24. 5. 25, 5.
6. 1, 27, 3N
\‘,l
N Ex. VIII (B)
L6 _c2s 3 -3 4. 3. 5. 1 8 ¢
7. —4. NS -4 9. 12. 10, 3. it -3, 12 %
13. — ¥4, 2 15. 1. 16, 21. 17, 5 18. -3
18, 105" 20. -1 21, 201. 22, 21, 23. 5 .24, 60
25,395, 28,203 927,202 88 -3 20, 2 0. 3.
8L £11, 175, 6d.
A0NER, () £3-176 + -01d., (i) £3-877 + 02d., (i) £3-877 + 024,

”\’ ~/ (i) £3:384 + -09d. (i) £635. 5. 2., (i) £755. 8. 4d., (ii) £775.8s. 4d.
\/ {iv) £676. 17s. 6d. .
3. M am, § am, 7 am., § pm., 11.20 p.m.

Ex. IX (a)

1. ac — ad + be — bd, 8, ac +ad — be — bd,
3. Bac 4 ded + Bbe + 6bd. 4, Gae — dad + Dbe-— 6bd.
5. a0 — d0d - Qb + Bhd. 6. GmIP — Gmig® — 10pip? + 1607



\/

Y. 2% — 5z + 8.
1 +x — 6
13, ax — ot

16, a® — B2 + ac + be.

18, 10x%® — 10y

o Jr ];

3
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8 2+ 5z +
11, dat -
14, 2® — a®r.

6. 8, A~z — 0

doy — By3 12, 1222 — 262 + 12,

15, a¢ + ad + ae + be + bd + be.

- 15. 19, o + 22 — T + 2,
90, 2af — Ta® + 10a — Ta + 2. 21, 2% + oy — 13280 — ap? + 1204

93, a® — ® +5 + labe.
24, 4 + 4w - Bms‘-trﬁm*-— 1Bzt + 1428 — 82

Ex.

IX (B)

1. af + 2ab -+ b%, 0? — 2ab + %, 0 — B

8 da? & dab + b2, 4a® - 4ab + b4, da® - [ 18
3. a? + dab + 407, a® — dab + 403, 0F — 4%,
4, 46“ H 20m+25 422 — Wz + 26, 428 — 25,

5.Z+x+1,4

—-a:+1,z—l.

8. 42 + 120y + 932, 4 — 122y + 9p, 42° ¢ gpes

8, a2 + 6% + ¢ + 2ab + 2bs + 2ac, @

at + 2ab +

9, 4g° + 52 + 4¢2 — dab — 4ba+8as,

bﬁ_cz

da? + B* + 4¢° — dab.
10, 144a® + 144ab + 360, a? — was + B,

2. a+b 38

& Ex.

— & ":4. a—b
Y. @+ b, rem. 2b‘3 K\ﬁ. z— 2.
s 12, &% — 2% + dai® — 8. 18,

I, 22+ 2+ 3

14, 2:* + :uy-—@g?"

17, 2z - 2{-‘1.
N\

\...’

O\
L., (.1} oY, (id) &Y, (iii) 4-2ab.
B (1) at, (i) %, (iit) 1.

8. () 4% () 45

8 9 0, 9b%A. 10. 35
EX.

4. 2z + Bb. 2, 2a — bb

5 at-2a-—2 61-2+"

a, 99, 10, 123.

A 1732 14.. 2-236.

15, a® + 4z
18, 6.

Ex.

IX ()
b.oo+ b

p \: ' N
oY’
- (‘:}‘: “
N
w, 989, 2200, 2478,

8.

17, ab — 40 + 3b — 12

'+b‘3+a”+2ab—2bc 2a¢,

a - b, rom. 20

9, a* - 2z + 2.10. 3 Sutt + xy — 4

+ 8.

1X {D)

(itd) 4. 6. () 1, (i) (i) 16

16.

3+a-ah
1+ 2+ %

2. (1) 4y, (i) 4, {iH) 4oy
a. (i) 23, (i) ¢4, (i) L.

m’+b’+4c‘—4ab+4bc Bac,

", o5yp.
4
1L 13.,,-
IX (B}
3. 4z - by. 4 61— L
oot — oy + 2 8. 3" -2+ 1.
11. 556, 12. 1414,
15. 2449 18. 2:848.
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\ 71, 2, See tables. 8. Sin of angle equals cos of complement. 4, Sec tables,
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17, 2875, 18. -198. 19, 15-214. 20. 30-793.
2L, (i} 13 om., (i) 256 cm., (iii) 41 em., (iv) 85 in., (v} G5 {t.,, (vi} 37 cm.,
{vii} 43 in.

22. () 12 om., {ii) 55 om., (iii} 108 cm., (iv} 20 in., (v} G0 in., {vi) 77 ft.,
(vii) 3 em., (viii) 27-7 ft.

5. Side opposite angle nearly 90° is nearly equal to the hypotenuse;
gide opposite angle nearly 0° is very small.

Ex. XII (B)

1, 5196, 6 in. 3, 381, 5 cm. a8, 1-5, 2:598 in.
4, 2:06, 2-45 em. b. 450, 4572 in, 6. 1-607, 1.915 in. .
Y. 78 8q. in., 611 sq. cm., 195 sq. in., 252 sq. cm., 914 sq. in,, 1-53 eq. 10
8. 251-7 ft, 8. 37° {approx.). 10, 122 yd,

23, 194 f1. 24, 11-31 em. 25. 18-03 cm.
O\
Ex, X (1) A ¢
28 A
1. 90°, 108°, 120°, 1284°, 135°, 140°, 1447, 2. 180°, ciecle, "
\/
Ex. XI {a) ) \'N}‘.
LEssdind i 34:L 4, 4:1. ,\'3‘5. 1: 12, no.
- 50 3
6. 4:5. Y. 22 :7, 11 ; 14 {approx.}, 8. eV 56 {approx.).
\M -~ B
5 3, 3, -
9' §,‘0’s'{e’r»é‘s Tt E 'IE}\W'—B
Ex. XI (8}
O .
1,85 2.2 8 8. 4 223 {5& ‘%“’. 6. “—f’. 5. % 8 b.
9, (i) directly, (ii) inversely, (iii) d;fec:tly, {iv) mverselv
10. (i) 8, (ii) 83, (i} 12, (iv) 22}.4 " IL (i) inversely, (i) direetly.
12, 32,800 sq. miles. \) 18. 2:618 om, 14, }.
x =R 5.
15. 360" 360 ° 13..3»&103 inversely equal, 15. 128 AS gm.
. 11
18, 7854 in. \1‘9 57.5°, 28.65°. 20, -2, o
A-T {
o= ; : =3:L
22 AW ‘,\, ” 9. 4, inversely. 27 1t :2nd =3
7,3 Ex. XI {c)
”\s
8. 5073 7. 2% 8. 13 o,
10,5 and 4%, 9 and 5, 10} and 74, 12, 2 e
ot Ex. XII {a)
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Ex. XII (c)

1. -35, 82, '79, 1:08, 1-57, 2-27, 3-49, 4-71, 5-41, 6-28,
2. 12, 63, 138, 180, 3034, 8680, 360, 270.
8. Answers of 1 multiplied by (2) 5, () 10; Radians of 2, multiplied by

(%) 5, {b) 10, 4. 1-05 in.
Ex. XI (p) N
2N
1. 96 8q. in. 2. 76%°, T63°. 7\
3. 1072 yd. (approx.} 4, 7-15 em., 71-5 6q. em. (approxh\/
5. 40 sq. em., 12 em. 8. 474 sq. in. (Mf;'
Ex, XII (E) N

2, 148, 227 cm. 8, 176, 1-31 em. 4, 2-69, 3-08'%em,

5. 766, 643 om, 6. 771 392in. 7. 2:31,R03, 311, 10 em., 7-83 in.
8. (i) 815-3, 321-5 yd.; (i) 475 ft., 9° 467, K

10, 1-065, 1-13, 2'65, 246 5q. em.; 11-6 s\ Jn.)

11. 15,474 miles, 644-8 miles per hour. \,J

13. 34 ft. 14, 176-8 sely 15. 74 million aq. milea.
1} million sq. miles. 17, 3718 pifles, 18, 4170 miles.

19, 84°, 497 ft.; 192°, 168°, 11';?:&'.;” 160 r.pm., 187, 20, 21-20 in.

=
-

e
\Revision Ex. 1
A\

L i) —4, (i) 6, (i %‘(a} + B}, (iv) dafa — &) — 2z + p)

2, (i) —20, (NG, (i) — 8+ + 8z + 3, (iv) (e — 3b). 8. 0-0 in.
£ ) a

4 (o @Y -1 50 s(g + 2), @) ¥ ir + 2v3)

8. 94 o\ ¥, 6 + 427 -+ 9y? + dax — 12zy - Bay.

8, (ol ) —27, No. 9. () —8, (i) 0. )
2a4, 1268, 10-98 in., 34-8086 sq. in. 12. (i) 0183, §. (ii} 1-818.

18. % = boosC + ceosB, b= ccosA + acosC.
O Ex. XIIT (a)

1 (i) -5, 14 (i) 4, 4 (i) -7, 104 ‘ ‘

2 {iyy=3x-T7, iy = 32+ B, {iii) ¥ = 8= — 3, [iviy - -22 + .1_1,

(viy == 8.y - & N

by—ta+By=r-by= "ty = ~4z -8,y =5y= Db
2=5 2= —b ] .

%, The graph becomes steeper, and fipally ia vertical.

g y= —0lz—3,y=04+ 30-1.
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Ex. XII (B)
3. 2%, -3 9. 14th, 10. Sth.
1. (i} 448 p.m., (i) 450 p.n. Thursdey, ¥ = L0z — 30, y = 50 — 5z,
12, % = 2¢ + 3. 13, y = g2 — 6. id, y= ~2x 1+ 3.
15, ¥ = 3. 18, &. 17. y = -z + 3.
18. 3, 12, —9. 19, {i) to (v} — 3, the coeflicient of # In all cases.
Ex. XIII (c) O
1 f =08k + 8. 8.f=0217w+ 15. 4 R =0073D £
5. Temp. = 3t + 15. 6. L = —0-68%¢ 605’7.,“'}
7. R = (-344¢ + 100 8. V= 000128 + L . )
D
Ex. XITI (D) \‘:}\
_ 450 _ D - -
4 V= R 5 D S B.y’:'§\+2,x 0y =2
Ex, XIV (s)\V
1 113, 7. 2, 3, 2. BNG, 4. 4. 3 -4
5. 18, 14, 8.5, 7. o) 7 o, 10, 8 2,4
g 3,2 10. 8§, 33, 3. (V1L 4, 4 12. 20, 20,
13. 174, 12. 14, —2.7 15. 9, 11, 13.
18 &% & 17,4800, 5. 18, 74 — 4.
RN
)
\\~~ Ex. XIV (B)
La+b+1 . 2 3",‘;“. 3, b~ c. 4. ab.
N ¢ o A
5 1 ) 8 ab. 8 5 g, 2 \/ =
= E"\so
0 50 2 12, \/‘3. 13, \/W
7 Pt 2N dor

W g Q Q
S Mk e L R AL Tl Tl

\}15 _ Wel + wt Wal-2) ,_a(Ws+w) - WeT __ wle- 2
T Werw YT T4 w T WT-a)

BLePE0 g WL T
e W a

WAt
o twsiz — 8 WL+ T -2 wm
17. L W (T - «), ¢ wia — ) o

_ (wy + wyalt T WL+ T)
wy b owes + W )
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L1 L H Hi
8. = % m.D"m. m.k-A-—:(T—_ﬁ’T-EE+t_

L2s—w) s 1

2« a Rl L R U
2 e ] 2 2
22-3=?J—2(;&,G=U—28u,v=x’u=+2aa. 23.0-24-1:.
w vt — ut FRA
24.F=2—8{v*—u’),g= T %'m’f{?“__,:"
28N
37-f“£;,”=u1f{f- 28, +whenu<f,—when{.§t}:’.
99, A-1,B=2 80. a = — 1244, b = 4, pht.”
QL. g =~ 4n®l®, | = gitfda? = 320 O
’\.’
Ex. XIV (c) O
88z ' 88z — 3y PR\ _
L5 2 3. aaa{s{ 4. 525z,
5. 9. 8. 4§, 74 in. 7224 8. 30 m.p.h,
9. 300 r.p.m. 10. 9,11, 13,15, A3 0. 12, 21, 32.
13. 20 x 159yd. 14 3. 1 ey
W
ExaXV (a)
1 afx — 1) 2, a(l%= ). 8 ala + ).
2, ax{a — x). Bag(z® + B 8. (2a + 3c)a — 28}
7. {a — 3)(z — ¥)- N+ 3)a — 1), 9. (2y - B)i=* + a).

10. (2 + 3}z — @), (I (a® — 280(e + 8). 12 2o — &)z — 3).
13, siot + dbe — BXNde).
14, (i) (s ~ D){adN: ab + &%), (ii} (a + b)(a® — ab + BY).

A Ex. XV (8)
L (o~8tz— 2. 2 (z+ 3+ 2 8 (z + 3)(x — 2\
4, @::6\))@ + 1) 5. (z — 3}z + 2). 8. (z — BYz — 1).

gl + 6z — 1) 8. (z — 8}z + 1) 8. (2 + I2a + 1)
13;?(2 - 1)2(}xm 1. IL{e+12fs- 1) 12. (5 — 12){a + 1)
W18 (0 + B)a + 2). 14, (z - 8}z — 2). 16. (a + 8)(a — 2).
Y18, (2 — B)s + 2 17, {a + 4)(a + 3} 18, (s — 4)(s - 3).

\ 19, {¢ — 4)(= + 3} 20. {a + 4)¥a — 3} 21, iz + yiz — ¥

29, (¢ + 2yMz - 24 23, {2x + ¥){22 — ¥ 24, [z + 1}z - 1},

25, (zy + b{zy — 1 26. (2a + 3b)(2s — 3B).

2wty — e—yg+ 1 %({;ﬂ;;)ﬁ*l}ix-y“ll

. (3az + 2hy){3as — 26y X .
gﬁ. Eaaf z+ f)i y)(a—z—b—y}. 22, (a+z+b—y)(a+:c5— B+ ¥
38 z+ytz—ytH 8 {s+y+ ey~ 8
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35. (22 + 3y + 1){2z — 3y + 5). 86. (x* + g* + o)t + o - ay),
B0 (= — g+ ay)(a® — y - ay) 88, (w — dy)(x - ).
89 (3= + 2432 - 3y). 40, 3(2x — )= + 2.
4. (4= + 3y)(3x — 4y}, 42 (b— )b~ c+3)b—c~ 3.
43, 2{2x — g}z + 2y). 44, {a — bBila + b + ¢\
45. {a + b)(h + ¢){c + al. 46, 3x(2a — w)(2¢® — Zaz + 5xd).
N
Ex. XV (c)

3. (z — 1}z — 2}z + 3)= + 4). 4, (a + Ijfe — 2)e — 3)e — 47~~
9. abla — B) + belb — ¢) + eale — a), a¥b — &) + b¥c -~ u)+¢;3( vb,\,
fa—&+b-e)+le—d)+{d-a) ab{b~c]4 &cc—d)+

cd(d - a) + dafa — b, -2 bt p

Ex. XV (v)
132 2. -3, -2 3/ 4 4, -3,
5. 6, 2. 61,15 N84 8. -5
9. 2, +3. .42 Nab3 -7 -2

0 i

1. 3,3 —& W20 N\ 15 0 -2 16 - 22
Po@-1 =@+ 843 Boos 202

Ex. XV (5)

L (= + y)lat — 23y + sffae\ ay® + o).

B, (z — yifxt + Sy iR + @+ .

3. (x — y)=® + qy RO

4. (2 + g™ — @+ ¥)e — )t + 2y + 47,

5 (= + yl= _\f)‘x‘J (% + ). 6. (m + y)x® — my + yE(aF — 288 + ).

7o (2 — PN 2y + o)t + 2% + ). 8. = — #fy + ay? — ¥

8. 20 + BF o + % 10 82® — 124% -+ 18y — 274

11 4\4\6:;3,: + o2, 12, 28 4 233 + g5 18, 2 + 2%t +
Sy 15, e* + 2u3h + 4a?h?® + 8ab® 4 1651,

1&{ —4){& + 1). I (B + r)(R? — Be -+ #2), (B — #}(R? + By + %)
ABY (a + B + da + b)e — d) + 16{c — di,

“NMY, (@ = 5P — (@~ b6 — o) + (u — BB — ) — (b — o).

790, a? + THE + 4¢® + dab — 2ac — 10%c.

Ex. XV (7)
L (z — 4}, (2 — 4){=* — 1} 2, (z + 3), alx + Nfx — 4}z — 1)
8. 2, 4%a2% — 2 - 3). 4 (- d), @+ Db -2t - 4ot 4

5. (3¢ + 2), (3¢ + 2){2a — Vie + 1}af — a + 1).
B (@~ 0),(a— b+ b)a—25). T 1a%-8 O 2—

|—|||—l
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R ol 222 = 1 2 - &)z - 7
10, ;- b T Wiag - 12, (“*—,};L—)-
{z - Dx-2) - x—-a 2
15, ——— = _ "% -
a® Ia. {@ — B¢ — a) 15. 2t - 4
T
16 _l—_LL 17. ('.‘_E":‘y)",_‘- 18. a? - 1.
_.Lfv— 150 + 14 bz T+ 3y
19. 71 Tt . 20. aTb'- . Ei‘: ':y‘.
- (e — a}a? + ab + bY = ¢ AN
o e e S
(a® + bEE . y
25 ﬂ. T b‘ . 26- Wzt %‘ l- @ CI
a0, fa + &) 3l.LA=3B=2 &’
(@ + b) R84
Ex. XVI (a) v
141421, 175205, 2-23607, 2:64575, 282843, aﬁm, 331662, 346410,
3-60555. \ v

Ex. xvr‘(ﬁl;
2, 3v3,4v3 5VE VT 3. 2328".-}196, 6-828, 3-464, 6708,
4 (i) 9V2 — TV, (ii) BvE — 44800
5. (i} 60, (i) v 30, (iii) 8 + V'8, iw) 12. 8 11v6 — 2.
%@+ 2vVab + b a- 2«/aa+ b, 8. () 3{vE + v, (i} 6V
9. 11v5. eV, (i) v3— v2-lorl + v2 — v3,
11, 10-806. 13. i) 3058, 0, (ii) 1414, 447, 3148, 1-201,

4+ 4v8 \1} (# + V3 — v3), (zV2 + VI zv2 - V3)

'n'

2NO L Ex XVI ()
1. 8944';\5 “‘2 268, -816. 2 2414, -414, 588, 8. -BD2, 5-828.
L L0506 () ~6, () 3t - N % 7 8V,
- V15
8.3 + 2v2 = 3828, (i) 8 + 3V = 1535, (i) 25 Y10 - a1,
ONY v+ 3VIO+ 2VE + 4
\a (iv) Tl 2-378.
Vo, -sva 10. 5 11, 173 12, 3v2.
Ex. XVI (D)
L v2:1:l 8 5v35 4 800eq yd, 20veyd 8. 2892, 072220
BV3,

. 165z, 026928 8 6v2in a, e in,
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. XVII (a)

1. 14, 21, 1-2, 9, 16, 3-6, 02, 8. 1, 15,
4. 01, 21, 31, . 05, 111, 0-2, 0-6, 1-9, 8, 14, 24, 44,

Ex, XVII (&)
L af, o}, a,t o}, (a + B, R PR v S 5 b 8 af - 12N
4. 04, 027, 0. B, 0:48, 02, 047, o\
6. 0-78, 0-18, 118, 0-9, 0-96, 144, 0-36, 0-7, 0-52, 1-62, M

P \'“:‘

Ex. XVII (¢} /\\

124313 2.NiL,31,6527 & 24915 J018, 1-2006, 0-200.

4, 1-48, 252, £234, 0-184. 5. 16:21, 14-34, G\} 9684, 83, 1-87,
9\

Ex. XVII (3 y‘\‘

L. 02175, 1-2175, 22175, 8-2175, 1-2175,,2 ms 52175,
2. 04771, 14771, 24771, T-4771, 251.59,,: 5159, 3-5159,
8. 10523, 3-9523, 1-0523, 3.7042, 04995, 0-4072.

4, 0, T, 3, 1-0004, 20009, 3‘0009.“ N

\Ex. XVII (x)

1. 1473, 147-3, 0014?3, 0 ‘1478, . 2. 3692, 03692, 3602,

8. 1-2687, 0185780 4. L 5. 3:6358, 0-004323.

6. 005495, NN 7. 01858, 002807, 8. 0-1452.

x:\..'
O™ Ex. XV (7)
1 55.3\3 2, 43.07. 8, 108,900, 4, 1455, & 1774
8. 2929, %, 8212, 8. 2749, 0-2740, 9. 1-877. 10, 2:975.
1) (1} 4-385, (ii) 0-6374, (iii) 1-315. 12, 4232, 18, 4341

\:14. 8126, 15, 0-419. 18, 442, 17. 4-767. 18, 76-835

19, 3-1827. 20, 1-875.

Ex. XVIII
L 22 —3z~4, 2 —-22+8¢~8 8 2P-8z+1 4 2*—~6. .
622+ 2, 8.2+ 2 +3 @3 -3 11, W = 0-7854%

12. Ft. per sec. 48, 80, 1131, 143; . 25, 100, 1564, 289.
Mez=x+1 150 18. Thevaluesof yareequalatz = £ 2.



ANBWERS 431

Ex. XIX (a)
1.3, -1 2,92 -4, 3 0,-2. 4 3 5. 4, roots are equal,
6. —11, —-10. Lt A £ 1L -4+ 81,-3 10 44
1L §, -4 2,1 -1. 18, 1, -3. i -~ -
15, 1-66, —361.  18. 2.4+ 2v3. 17, ~44, 1. 18 4, -&
—5 R [5
18, T2EYI g 4y o1, 22272
22, 134, —1.94, 23. 5, -3, 241, 4 % 4 -1 A ¢
2 A\
Ex. XIX (B) NS ¢
1. 4v5cm. 2. 2/ em. A\ "
3. 96° 148°; 100-8, 123 aq. om.; 9:2, 4-44 sq. om. AN\ 2
4.31«/2111 5. 277, 8, 175 miles. 7 123 milos,
8. 2:84 milea. "’\
Ex. XX ()
14, Parabolie, {i) 2 miles, (ii) 12 miles. 15% 10 miles, (ii) 1 mils,

17 422 — 102 + 21, 34 3v -3, 1&3:9—1;% 48, 19Far>-‘-;—2.
2L, 27x* — 34x + 3 = 0. {

XX {B)
L 24, 42 2 43 42 vs, i\/ii:-%——"““" 4. 2, Ve
5. 4, 3. 8. —2a, g '? Once, near — 1-52; two.
AN
'\;n': Ex. XX (C)
2or=4 -B A8 z=7-4 4, z=0,8 5 xr=863
y=L -2\ y~4, -7 y=05 y=ih
6.::—42*-‘2:!;1«’6 Tz =48 12, 2 = 2, —1.52,
¥ =2 4\-:2$v’ﬁ ¥ = +4. y=—1, 1-84,
18, = =h 3. 14. z = 1-175, —0-425.
g h -1 v = —065, —385.
LA :F2v’6 16 ()2 =64 (iDz =43 17 2 = 325 102
~ -4, ; =- F2. - 1-92, 3-25.
\ y- V6~ 1 b y=F ¥
- . )
18. () VT + V2, (i) vT~ v2 19, 3vV2- v5. 20, v3- v
e —— b
21, V19 + V17, 8. va+b+ va-h ars Jb
24, 9 and 5. 25, 14 and 6. 28, 13 in.

7. r =52 +v6).. 28, 1260 ft. (approx.}. 29, 124 and 22} m.p.h.
80. (i} —2to +2, (5} 2, —2 (iii) 2o » and -2 to ~e0,
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Revision Ex. II

L 149, 4%. 2.9 =56-2. 3. y= 1{3—”" -3 4 53,22 5 10

LAl (e 2 - 1) () () (x? + S )(x2 ~ By%), (1) (& -+ 8Pl - B),
(i) (2 + 1z — 1422 — 2}, (%) 2z — 242 + 242 + 12).

o

P~ 14 8 (i) V2(da—3)+ v 3{35--2), —5-054; (i) (x+y){a:2+xy Ty,
11. 3584 12, 1,2, —3. 18. 7 + 3z — 20°, (2, 85).
oY
Ex. XXI ¢ 3\ ”
2, 948 em., 73°, 42°, AN
8. 41° 25/, 55° 467, 82° 497; 28° 57, 46° 34", 104° 29, N

4. 30-69 sg. om., 4648 sq. em. 5. %3 w?. 8. \I:&%S, 78, 6:08 cnn.

Ex. XXII (8}~
Y od=ut— iat” "'\3‘.16 1., 576 ft., 1152 ft.
éazs_é—z 8. 18000ft1.b @500{1; -1b., 13,500 ft.-1b.
7. () w = 54, (i) 62} in.-Ib., (m),w 2 5(; — 24}
8. ¥ = 425z + 14 (approx.). ;.;m

8

\ Ex. XXII (g)

1, 667 8 34 3, 10134 c.c. 4, .
8, 48 sq. in., 80w 8y in. 11, 8% million sq. miles, 52 million sq. miles,
BE-= 13 421 )0-53822 (approx.). 13, w = 0-00026s* + 0175 (approx.).

1 @ = "N 15, 1557 gl 16. 9 = &Ct, 17. d — 162
18, P = 40C — 20, C = 10, 19, 7-938 cm. 20, +995 in.
\\“,
u\ Ex. XXII (c}
'L 1600 c. in., 1067 sq. . 3. 3044 sq. in., 7306 c. in.

4, 10183 sq. in., 7637 c. in.

Ex. XXIII (a)

2
2 = 1. 14-61.
1. PR V3 V2, V2,1, w/’% LA v’% i, 0,0, 2, Hach 3.
. Vet A — 1 3v13 5y | . sind vl <oodtd

Y I Er B U RV ey L W s

:
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Ex. XXIII (5)

2, 501b., 50+3. 3. 16584 1h. 4. 511-4 ft. per sec.
5. 12-856 sq. in. 8. 43587 &q. in.; 1743 in., 10 in.
. (i) 105 m.ph. N., (if) 46 m.p.h, N., (ii) 93-68 m.p.h., 16° & clockwiso
from N, (iv) 6539 m.p.h., 63° 24" elockwise from N.
8. 20-5 miles, 2-96 miles, 9. 84-3° or 89° epprox. Q
1. From 36° N, of B, (147-7T m.p.h.).
11. i-4 miles horizontally. 12, y = $2 — 22t
18 y = —0-0002132% + 32z, 14, 4500 ft. per eec.; if y > x tarle,)

=3

o N2
¢

Ex. XXHI (c)
4 ¢
’ 1200 | 180° | 210° J 270° |\G00° | 360°
sin | 0-868 0 | ~05 I/} -0s86 | o
cos | —05 —1 | —0886 |0 05 1
tan | —1-7321 0 05774\ | ~17321[ 0O
P, abo,
f | o\ [
5. 90°. 10. Sine curve., ’: "

'o’#
«

JEX. XXIII (n)

0-3827, 0-9230, O-4H42% 8. 0-9609, — (2588, - 37321,
(1) 46°; (i) 0°,«{6{,~1sn°; i) 0°; (iv) 46°, 135°

—— 1— 1 —2zF {1+ v1—al
2vT = gD~ 27, =, o

¢ A L

6. 4sip§qﬂ-‘ 4 sin'z. 7. 2ain§,/1 — sin? 5.
14.\@};{11_&.:0513, (i5) 2 cos Asin B, (iii) 2 o A cos B, (iv) -~ 2ain Asin B,
& 2tanA(l+tanB) o 2tenB(L+ tantd)
™3 ) 1— tanf Atan® B’ Wy " tandA tan®B
16. 90°, 53° &, 36° 52",

.

e o

&=

() 15, 877 Kilooycles.
N\ Ex. XXIV (a)

i a = eosboose, {ii}cosa=cusbcoac-ainbsinc-cos[b+c)
; E;; g((])i, (if) 45°- 3 A=40°3%,B = 7_1", ¢ = T4° 54",
4. 2179 miles, 2200 miles, difference 30 land :mles
5, 4164 miles, 4418 miles, difference 264 land r.mles.
8, (i) 2011, (ii) 6780, (iii) 6120, (iv) 5860 sea miles.
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Ex. XXIV (B)

L (i) 218° 42, (i) 127° 18/, (iii) 126° 14/, (iv) 133° 6 (approx.).
. 1137 12/, 111° &7, §7°, 79° 30" {approx.).
. 2782, 4300, 1400, 3260, 7460, 3360 miles (approx.).

= ]

N\
Ex, XXV (a) AN
{
1. 3, 5, 23, 222+ 32+2 Bfy=4t+iy+ L2

2 1 \

—9r. & = 3 —e £

4. 25 &, -3, 6. & = ut + Jaft 6'x+3+z+'4," Y
4 3 3v2 4

=5 8 9, 0-8037, 3

" +3 -2 g

Ex. XXV (B) /W™

lLa-= g, 075 4, 756, 262,46 7. 508 in.
8 »n = 3534, k= 17,100, 9. 4765 millioh miles.
10, 20% sec., 11-312 in. & fg’:,

Lot + 4ty + Ba%y® + 40+ o4
2+ Gxfy 4+ 16xty? d—"‘?@:r:?‘ya + 152yt + Gay® + o
8. & — 30% + 3ab{A B9 o7 + Tafh + 21a%® + 35a%H® + 85aFHF + 21akP
+ Tab® + W, aB— Bath + 10a35® — 10a%b% + Sab? — b,
4 a1 — 5a%? 1 \10uHt — 10a%E® + Gaib® — BIO,
5. 16a* — 06a%(A 216a%% ~ 216ab® + 8144 10, +32, Il 104

O
"\Q.
\\kz Ex. XXV (p}
;*:(2}0-459 8q. in. 2, 113-427 sq. em., 1703-822 c.c,
81250875 o.0. 4. 3039, 5, 3636 c.0.
“\“6. 1:00006, 0-099, 10-007, 1-004, 0984, 101-2. %, 427° C. (approx.)
8, 974° C. {approz.). 10, 196 e. in.

1L, (i} -11, -28, -38; (ii) Four-figure tables show no difference.
12. ) -002045, (ii) 001472, (iil) -5; (i) 0, (i} 0, (iii) -3.
Ex. XXV (&)

1. }#B2 #R2. 2. 2q9R% 47RE, 8. imat. 4. Fwrd, furd
5. 0-89% (approx.), 6. 119, Y. 7Rs. 8. L=R%, nhh.
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Ex. XXVI (a)

1, (i} 20, 23, 26; (i) —15, —20, —25; (iif} 19a, 234, 27u,

2, 3z, —a, —ba, ete.

8, (i) 6, 10, I4, ete.; {1} 6, 2, —2, ste.;  {iil) —6, —2, 2, ete,; {iv) — 6,
—10, — 14, ete.; (v) |, —3, — T, ete,; {vi) 0, -2, ~4, ete,

4, g, (@ + d), (& + 2d}, ete., one lesa, " A

Ex. XXVI (5) A
Nows

1. (i) 486, 1458, 4874; (i) F» —~5ber roies (i) 4825, 9608, 192a% ¢
2, %z, — 602, 1203, et § ¥
8, (i) 1, =2, 4, —8, ote.; (i) 1, & 1, & obo; (i) —2, 3 — ebd

4, «, ar, ar?, eto.,.one less. B, () A, (i) 6.2, (i) a2, (i{) {q;r.

W

Ex. XXVI (¢)

L 7. 92,6811 1417 4 6,105 P52, -1, —4, —7.
8. 325. % dn(n + 1. 8. 400. L ¥ B 420,
10. 8, (n + 1). 1, 28 2 12 1220,

»

Ex. XXVI\(D)

L 4374 9 —13122. 6 1248, +102 or —12, —48, — 192,

7. 3in. 8. 728, —364..0% 8. 113 10, 3ig¢s.
P 1
1l —8072 1{:@;;}, A% A S
%87 Bx. XXVI ()
1) b4 & G, ~4 3. 4, 6.
: \\¢J
N Ex. XXVI (F)
1 eao(gi0d. 8. £265.65.0d. 4 173900 B, 2022
6.2 2556, 6-234, 11-25, 20, 7. 4187, 8. 111} yd,
B£61. 158 0d,
’..\w,
Ex. XXVI (g)

1. @) 1, (i) — 1, (i) 0609, (i) —0-30L.
2. (a) (i) 0-0218, (i) 0-0214, (B) 39

x
8. a.r., ratio §. 4, Eq_ual. 5. li- 9. ;‘; ufter  — x.
10. £7. Ts. 0., £137; £5. 18s. 0d., £172 ] £10. 16s. 0d., £ﬂg. 4
1 -7 » = 3 _ 1} 13
10 % } 1Boat 54 Mol

w1l — 1)



436 - ANSWERS

1 —a" HEt
15. 142 yr. 18. 5 (1 ) TiTe 280483,
0 )
17- y = =1 -
Ex, XXVI (=)
1. 40320, 60, &, 5040, 10, 6, 3, 2. 2. 30l 3. ,Cu A
4, o P:. giving ,C; different hanids, 5. 380, 6. 24
7. (@) Py 100; (5) 85, 130. 8. {a) 125, 180; (8) 155, 215. 9. 11,°
:"g\ ~
Ex. XXVT (1} A\
2 —448. G, 2% &, 3% 1. 5. 10; 5th and 6th, 126. 6.\3?%1, 15360,
¢ s\
Revision Ex. III '\
3 p
1, 1}, —2} (approx.). 3. 24(}14’,? 23,
8. 2-45 sec., 1768 sec., 5-38 sec, &‘iﬁ -2_ 4, {(3v2 -4
10, 1-264 in., 2-905 ¢, in. A

1. 3 2. {1} 2, {ii) 2, (iii} ; 2 flv) =2, (v) &, (vi} L. 3. 0.

A
,\“, Ex. XXVII (8)
L -1z, -8, -3, o\z 8, 12. 2.0

s
..‘,

NGO Ex. XXVII (c)

1. (i) 1, €96,°707, 5, 0, ~-3; (i) 0, —-5, — 707, —-§66, — I, - 566
(lu}l 14, 2,4, 06, 4
3. 496,
4.\ m ‘283, (i) 707, (iii) -366, (iv) -366, (v) 423,
»\6, iy -293, (i) 366, (ili) 1.
\'"\ L) & () T4, (i) e, (Iv) 0 8. 1

4

Ex. XXVII (p)

rcosx — Sing BinE — i cos X

L — _— 3, —cosecta.
foad sin®x

4~2xcosx4 a:*smx rainz + 2cosz _ nk_
cost g 5 - = - 6 zotT

7. Ena™ol, 8. sin 2. 8, —sin 22,

10, — o 11, 2zeinx + 2% coazx.
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12. sinz cos® + z{oosz — sin®x) = }ain2e + xcoglx.
13. » cosx sinm=1i g, 14, —nsinzcos™ Vg,

Ex. XXVII (r)

1, 6(2x — 3)2 2. 8(3x 4 1327 + 2r — 3% 8, 2xyvIF - I
4 ~zjva® —ab B, wfvia® — 2t N\
6. Ssin®xrconz, §cozdr, —%sinda
O\
() 2fveE + o2, (:.1) ZVaJQz, (i} ”’/v’z’ — @, (iv} —z{val — 5, :l:’, \\\
( 9;\/23 \/xsx (m)isecia: “("}g'
D
Ex. XXVI (r) o\
3. 17918 N 3 -
1 IR, 4 <
B () o () ~ gy (i) —3e75% (v 0 ES.
_ ¥ = N 9,
o~ g R\
10. 2% 1l k= -0l 324m1]]mna‘. Y12, 0488,
18. £2-718, £2. 14, Bld-4 ga.Il‘, B4 min. (k — 044&2)
15, 0-0603. 16, (i} coss e“"’, {ii) tam 1y 4 e
<\ 1 + 5
\WEX XXVIIL (a)
1. 0:975, —4:00,%2:88. 2, 2y 3. -1§ -3A
4. 22048, o™ 5. 0-7030, . B 33041
% L+ d4vEa v2 8 15°or89° (approx.). 10, ip x ip.
X’ m'_ g
1. 2= 3\{$ r= -t
a\\ Ex. XXVIII ()

"\I 15* c.C., B2 5. em. 2, 110 8q. em.
“\Ma, 0982 . ft. 5, 1-84 c. ft.

A4
Ex. XXVIII (c)

2. 3,127,000 sq. miles.

1. 08 c. f. = & gall.
2.#=°—TE+O where % = redius : depth of veasel.

2’”" i 4. 1217 w0,

1
8. (i)t = —p — +0,(ii]t-=fo—:c+0.
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Ex. XXIX (a)

W
2.—52!,%29. Brx=tdy=0 doa=1}y=f2v2

5. e = v5/3 = 74b, focl -56 in., direotrices 1-006 in. from centre.

Ex. XXIX (B) \5\\
_Fpt B eryd B :\Q’
LoTh e T P, Yo O
. 2=4y=46v3 5. 484°, 1313" (approx.). A
>’

Revision Ex, IV .\
W
1 2852 sea miles. 2, () -58. 8. 2865, _4)9314lh. 5. 475,

% . ¥ 4 B
h@my Sl denin 12,854y - 25vE; 0m
3Y2 e 4 éw T(2a® + B2
ls.y”VS(ﬁ-l),yw—s—»(lelj;{f’ 14. §{2a, + B,
15. 11w c. ft., N\
™

O

~
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